tìm p là số nguyên tố để
a) p + 4, p+8 là số nguyên tố
b)p + 6 là sô nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: TH1: p=3
=>p+14=17 và 4p+7=4*3+7=12+7=19(nhận)
TH2: p=3k+1
=>p+14=3k+15=3(k+5)
=>Loại
TH3: p=3k+2
4p+7=4(3k+2)+7=12k+8+7
=12k+15
=3(4k+5) chia hết cho 3
=>Loại
b: TH1: p=5
=>p+6=11; p+12=17; p+8=13; p+24=29
=>NHận
TH2: p=5k+1
=>p+24=5k+25=5(k+5)
=>Loại
TH3: p=5k+2
p+8=5k+10=5(k+2) chia hết cho 5
=>Loại
TH4: p=5k+3
p+12=5k+15=5(k+3)
=>loại
TH5: p=5k+4
=>p+6=5k+10=5(k+2)
=>Loại
- Do P+2 ; P + 6 ; P + 8 là SNT lớn hơn 2 => các số này đều lẻ => P lầ số lẻ.
+ Với P = 3 thì P + 6 = 9 không phải là SNT ( loại )
+ Với P = 5 thì P + 2 = 7 là SNT ( chọn )
+ Với P > 5, do P là SNT nên P = 5k + 1 ; 5k + 2 ; 5k + 3 hoặc 5k + 4 ( k ϵ N)
+nếu P = 5k + 2 thì P + 8 = 5k + 10 chia hết cho 5 mà 1<5 nên P + 8 là hợp số (loại)
+nếu P = 5k + 3 thì P + 2 = 5k + 5 chia hết cho 5 mà 1<5 nên P + 2 là hợp số (loại)
+ nếu P = 5k + 4 thì P + 6 = 5k + 10 chia hết cho 5 mà 1<5 nên P +6 là hợp số (loại)
=> Vậy P = 5
Lời giải không rõ lắm nhé!
Vì A là số tự nhiên nên n^2 + 3n chia hết cho 8 => n(n+3) chia hết cho 8.
Vì A là số nguyên tố nên (n^2 + 3n ; 8 ) = 1 mà n(n+3) chia hết cho 8 => n hoặc n+3 chia hết cho 8.
Khi 1 trong 2 số trên chia hết cho 8 thì số còn lại phải là snt do (n^2 + 3n ; 8 ) = 1
Mà khi 1 trong 2 số chia 8 phải có thương là 1 vì nếu lớn hơn 1 thì A không là snt.
Vậy n = 8 hoặc n = 5.
a) nếu p=2 thì p+4=6 ,p+8=10 ( là hợp số)=> ko thỏa mãn
nếu p=3 thì p+4=7,p+8=11 (là số nguyên tố) => thỏa mãn
Nếu p>3.Do p là số nguyên tố nên p có dạng 3k+1,4k+2
Nếu P=3k+1=>p+8=3k+9=3x(k+3) là hợp mãn số
nếu P=3k+2=>p+6=4k+8=4x(k+2) là hợp số
Vậy chỉ có p=3 thỏa