Cho tam giác ABC, trên cạnh AB lấy hai điểm D và F sao cho AD=DF=FB. Kẻ DE//FH//BC (E,H thuộc BC) . Biết BC=6, hãy tính độ dài các đoạn thẳng DE, FH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB=AD+DF+FB
AC=AE+EG+GC
TAM GIÁC ABC=AD+DF+FB+AE+EG+GC
MÀ AD=DF=FB
SUY RA AE=EG=GC
* AD=DF
AE=EG
FD=FB
GE=GC
SUY RA DE ,FG LÀ ĐTB TAM GIÁC ABC
SUY RA DE=1/2 BC
FG=1/2 BC
SUY RA DE+FG=BC
B. DE=FG=1/2BC
SUY RA DE=FG=1/2X9=4.5cm
AB=AD+DF+FB
AC=AE+EG+GC
TAM GIÁC ABC=AD+DF+FB+AE+EG+GC
MÀ AD=DF=FB
SUY RA AE=EG=GC
* AD=DF
AE=EG
FD=FB
GE=GC
SUY RA DE ,FG LÀ ĐTB TAM GIÁC ABC
SUY RA DE=1/2 BC
FG=1/2 BC
SUY RA DE+FG=BC
B. DE=FG=1/2BC
SUY RA DE=FG=1/2X9=4.5cm
Ta có: \(AD=DE=EF=FB=\dfrac{1}{4}AB\) và \(AM=MN=NP=PC=\dfrac{1}{4}AC\)
Xét \(\Delta ABC\) có: \(\dfrac{AE}{AB}=\dfrac{AN}{AC}=\dfrac{1}{2}\)
\(\Rightarrow EN//BC\) \(\Rightarrow\) EN là đường trung bình của tam giác ABC
\(\Rightarrow EN=\dfrac{BC}{2}=\dfrac{15}{2}=7,5\left(cm\right)\)
Tương tự với tam giác AEN có: \(\dfrac{AD}{AE}=\dfrac{AM}{AN}=\dfrac{1}{2}\)\(\Rightarrow DM//EN\)
\(\Rightarrow\)DM là đường trung bình của tam giác AEN
\(\Rightarrow DM=\dfrac{EN}{2}=\dfrac{7,5}{2}=3,75\left(cm\right)\)
Lại có: \(\dfrac{AE}{AF}=\dfrac{AN}{AP}=\dfrac{2}{3}\)
Áp dụng định lí Ta-let đảo ta có: \(\dfrac{AE}{AF}=\dfrac{AN}{AP}=\dfrac{EN}{FP}=\dfrac{2}{3}\Leftrightarrow\dfrac{7,5}{FP}=\dfrac{2}{3}\Rightarrow FP=11,25cm\)
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đo: ΔABD=ΔAED
Suy ra: DB=DE
b:Ta có: AB=AE
DB=DE
Do đó: AD là đường trung trực của BE
Trong ΔABC, ta có: DM // BC (gt)
Nên (Hệ quả định lí Ta-lét)
Suy ra : (3)
Từ (1) và (3) suy ra:
Suy ra:
Trong ΔABC, ta có: EN // BC (gt)
Từ (2) và (4) suy ra: hay
Dựa vào tính chất đường trung bình của tam giác:
DM=EN/2
theo tính chất đương trung bình của hình thang:
EN=(DM+m)/2
a: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
=>AE/4=1/3
hay AE=4/3(cm)
b: Xét ΔABC có DE//BC
nên AD/AB=AE/AC
hay \(AD\cdot AC=AE\cdot AB\)
Xét ΔAFH có
DE//FH
Do đó: \(\dfrac{DE}{FH}=\dfrac{AD}{AF}\)
\(\Leftrightarrow FH=2DE\)
Xét hình thang BDEC có
F là trung điểm của BD
FH//ED//BC
Do đó: H là trung điểm của EC
Xét hình thang BDEC có
F là trung điểm của BD
H là trung điểm của EC
Do đó: FH là đường trung bình của hình thang BDEC
Suy ra: \(FH=\dfrac{DE+BC}{2}\)
\(\Leftrightarrow DE=2\left(cm\right)\)
hay FH=4(cm)