cho M=1/1!+1/2!+1/3!+...+1/100!. Chứng minh 3!-M>4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
Ta có : \(\frac{a^3-1}{\left(a+1\right)^3+1}=\frac{\left(a-1\right)\left(a^2+a+1\right)}{\left(a+1+1\right)\left(\left(a+1\right)^2-\left(a+1\right)+1\right)}=\frac{a-1}{a+2}\)
\(M=\frac{100^3-1}{2^3+1}.\frac{2^3-1}{3^3+1}.\frac{3^3-1}{4^3+1}...\frac{99^3-1}{100^3+1}\)
\(M=\frac{999999}{9}.\frac{1}{4}.\frac{2}{5}.\frac{3}{6}...\frac{98}{101}=\frac{999999.1.2.3}{9.99.100.101}\)
\(M=\frac{10101.2}{3.100.101}=\frac{20202}{30300}>\frac{20200}{30300}=\frac{2}{3}\)
a) Mỗi biểu thức M và N đều có 50 thừa số
Ta thấy \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};...;\frac{99}{100}< \frac{100}{101}\)
\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
Vậy \(M< N\)
b) \(M.N=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}...\frac{99}{100}.\frac{100}{101}\)
\(=\frac{1}{101}\)
c) Vì \(M< N\)nên \(M.M< M.N\)hay \(M.M< \frac{1}{101}< \frac{1}{100}\). Do đó \(M.M< \frac{1}{100}=\frac{1}{10}.\frac{1}{10}\)suy ra \(M< \frac{1}{10}\)( Vì \(M>0\))