K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2019

a. Để \(A=\frac{2n-7}{n-5}\in Z\)thì \(n\in Z\)

\(A=\frac{2n-7}{n-5}=\frac{2n-10+3}{n-5}\)

\(=2+\frac{3}{n-5}\)

Để \(A\in Z\)thì \(\frac{3}{n-5}\)

\(\Rightarrow n-5\in\left\{-3;-1;1;3\right\}\)

\(\Rightarrow n\in\left\{2;4;6;8\right\}\)

14 tháng 5 2018

a)\(A\inℤ\)

\(\Leftrightarrow6n-1⋮3n+2\)

\(\Leftrightarrow3n+2⋮3n+2\)

\(\Leftrightarrow6n+4⋮3n+2\)

\(\Leftrightarrow6n+4-\left(6n-1\right)⋮3n+2\)

\(\Leftrightarrow6n+4-6n+1⋮3n+2\)

\(\Leftrightarrow5⋮3n+2\)

\(\Rightarrow3n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng

3n+2-5-115
n\(-\frac{7}{3}\)-1\(-\frac{1}{3}\)1
nhận xétloạichọnloạichọn
14 tháng 5 2018

b)Gọi d là ƯCLN 6n-1 và 3n+2

<=>6n-1\(⋮\)d    3n+2\(⋮\)d

<=>________   6n+4\(⋮\)d

<=>6n+4-6n+1\(⋮\)d

<=>5\(⋮\)d

Lập bảng(như câu a) 

=>\(n\in\left\{\pm1\right\}\)để A là ps tối giản

c)(chịu)

AH
Akai Haruma
Giáo viên
4 tháng 2

Lời giải:

$A=\frac{15-3n}{n+2}=\frac{21-3(n+2)}{n+2}=\frac{21}{n+2}-3$

Để $A$ lớn nhất thì $\frac{21}{n+2}$ lớn nhất

Điều này xảy ra khi $n+2>0$ và $n+2$ nhỏ nhất.

Với $n$ nguyên, $n+2>0$ và nhỏ nhất bằng 1

$\Rightarrow n+2=1$

$\Rightarrow n=-1$

------------------------------------

$B=\frac{17-2(2n+1)}{2n+1}=\frac{17}{2n+1}-2$

Để $B$ lớn nhất thì $\frac{17}{2n+1}$ lớn nhất

Điều này xảy ra khi $2n+1>0$ và $2n+1$ nhỏ nhất

Với $n$ nguyên thì $2n+1$ nguyên dương nhỏ nhất bằng 1

$\Rightarrow 2n+1=1$

$\Rightarrow n=0$

 

Bài 3: 

a: \(=\dfrac{3}{7}\cdot\dfrac{13}{8}-\dfrac{3}{7}\cdot\dfrac{7}{9}-\dfrac{13}{8}\cdot\dfrac{3}{7}+\dfrac{13}{8}\cdot\dfrac{8}{39}\)

\(=-\dfrac{1}{3}+\dfrac{1}{3}=0\)

b: \(=\dfrac{1989\left(1990+2\right)}{1992\left(1991-2\right)}=1\)