Giải giúp mình với!
49 < 7n < 343
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
46<x-45<49
ta có 46<47;48<49
TH1:x-45=47
=>x=47+45
=>x=92
TH2:x-45=48
=>x=48+45
=>x=93
vậy x=92 hoặc x=93 thì 46<x-45<49
\(a,25< 5^n< 625\Leftrightarrow5^2< 5^n< 5^4\Leftrightarrow2< n< 4\Leftrightarrow n=3\)
Vậy số cần điền là 3
\(b,256>2^n>8^2\Leftrightarrow2^8>2^n>8^2\)
\(\Leftrightarrow2^8>2^n>\left[2^3\right]^2\)
\(\Leftrightarrow2^8>2^n>2^6\Leftrightarrow8>n>6\Leftrightarrow n=7\)
(x2 + 7).(x2 - 49) < 0
+) x2 + 7 < 0 (vô lí, loại); x2 - 49 > 0
+) x2 + 7 > 0 (luôn đúng); x2 - 49 < 0
=> x2 - 49 < 0
=> x2 < 49
=> x2 < 72 = (-7)2
=> x < 7 hoặc x < -7
Vạy x < 7.
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}\)
\(\Rightarrow1-A-\frac{1}{50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...-\frac{1}{48}+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow\frac{49}{50}-A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{48}+\frac{1}{49}+\frac{1}{50}\)
\(-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+...+\frac{1}{50}\right)\)
\(\Rightarrow\frac{49}{50}-A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-...-\frac{1}{25}\)
\(\Rightarrow\frac{49}{50}-A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
\(\Rightarrow A=\frac{49}{50}-\left(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+...+\frac{1}{50}\right)\)
Ta có :
\(\frac{1}{26}< \frac{1}{25};\frac{1}{27}< \frac{1}{25};\frac{1}{28}< \frac{1}{25};\frac{1}{29}< \frac{1}{25};\frac{1}{30}< \frac{1}{25};\)
\(\frac{1}{31}< \frac{1}{30};\frac{1}{32}< \frac{1}{30};..;\frac{1}{39}< \frac{1}{30};\frac{1}{40}< \frac{1}{30};\)
\(\frac{1}{41}< \frac{1}{40};\frac{1}{42}< \frac{1}{40};...;\frac{1}{49}< \frac{1}{40};\frac{1}{50}< \frac{1}{40}\)
\(\Rightarrow\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}< 5.\frac{1}{25}+10.\frac{1}{30}+10.\frac{1}{40}\)
\(\Rightarrow\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}< \frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)
\(\Rightarrow A=\frac{49}{50}-\left(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+\frac{1}{29}+...+\frac{1}{50}\right)>\frac{49}{50}-\frac{4}{5}=\frac{9}{50}>\frac{10}{50}=\frac{1}{5}\)
\(\Rightarrow A>\frac{1}{5}\)( đpcm )
\(49< 7^n< 343\)
\(7^2< 7^n< 7^3\)
→\(2< n< 3\)mà \(n\in Z\)
⇒\(n\in\varnothing\)
\(49=7^2\)
\(343=7^3\)
\(\Rightarrow7^2< 7^{ }< 7^3\)
ko có