Cho a,b,c không âm và a + b + c = 1. S = ab + 2bc + 3ca . Tìm Min S.?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Min:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3ab\left(a+b\right)+3bc\left(b+c\right)+3ca\left(c+a\right)+6abc\ge a^3+b^3+c^3\)
\(\Rightarrow a+b+c\ge\sqrt[3]{a^3+b^3+c^3}=\sqrt[3]{3}\)
\(\Rightarrow P=\dfrac{a}{7-3bc}+\dfrac{b}{7-3ca}+\dfrac{c}{7-3ab}\ge\dfrac{a}{7}+\dfrac{b}{7}+\dfrac{c}{7}=\dfrac{a+b+c}{7}\ge\dfrac{\sqrt[3]{3}}{7}\)
Dấu "=" xảy ra tại \(\left(a;b;c\right)=\left(0;0;\sqrt[3]{3}\right)\) và các hoán vị
Max:
\(\left(a^3+1+1\right)+\left(b^3+1+1\right)+\left(c^3+1+1\right)\ge3a+3b+3c\)
\(\Rightarrow a+b+c\le\dfrac{a^3+b^3+c^3+6}{3}=3\)
Khi đó:
\(7P=\dfrac{7a}{7-3bc}+\dfrac{7b}{7-3ca}+\dfrac{7c}{7-3ab}=\dfrac{a\left(7-3bc\right)+3abc}{7-3bc}+\dfrac{b\left(7-3ca\right)+3abc}{7-3ca}+\dfrac{c\left(7-3ab\right)+3abc}{7-3ab}\)
\(=a+b+c+\dfrac{3abc}{7-3bc}+\dfrac{3abc}{7-3ca}+\dfrac{3abc}{7-3ab}\)
Ta có:
\(7-3ab\ge\dfrac{7}{9}\left(a+b+c\right)^2-3ab=\dfrac{1}{9}\left[\dfrac{13}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)+7c^2+14bc+14ca\right]\)
Do \(\dfrac{13}{2}\left(a-b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a^2+b^2\right)\ge ab\)
\(\Rightarrow7-3ab\ge\dfrac{1}{9}\left(ab+7c^2+14bc+14ca\right)\)
\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{27abc}{ab+7c\left(c+2a+2b\right)}\le\dfrac{27abc}{36^2}\left(\dfrac{1^2}{ab}+\dfrac{35^2}{7c\left(c+2a+2b\right)}\right)\)
\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{c}{48}+\dfrac{175}{48}.\dfrac{ab}{c+2a+2b}=\dfrac{c}{48}+\dfrac{175}{48}.\dfrac{ab}{\left(a+b+c\right)+\left(a+b\right)}\)
\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{c}{48}+\dfrac{175}{48}.\dfrac{ab}{5^2}\left(\dfrac{3^2}{a+b+c}+\dfrac{2^2}{a+b}\right)\)
\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{c}{48}+\dfrac{21}{16}.\dfrac{ab}{a+b+c}+\dfrac{7}{12}.\dfrac{ab}{a+b}\le\dfrac{c}{48}+\dfrac{21}{16}.\dfrac{ab}{a+b+c}+\dfrac{7}{48}.\dfrac{\left(a+b\right)^2}{a+b}\)
\(\Rightarrow\dfrac{3abc}{7-3ab}\le\dfrac{7a+7b+c}{48}+\dfrac{21}{16}.\dfrac{ab}{a+b+c}\)
Tương tự:
\(\dfrac{3abc}{7-3bc}\le\dfrac{a+7b+7c}{48}+\dfrac{21}{16}.\dfrac{bc}{a+b+c}\)
\(\dfrac{3abc}{7-3ca}\le\dfrac{7a+b+7c}{48}+\dfrac{21}{16}.\dfrac{ca}{a+b+c}\)
\(\Rightarrow7P\le\dfrac{21}{16}\left(a+b+c\right)+\dfrac{21}{16}\left(\dfrac{ab+bc+ca}{a+b+c}\right)\le\dfrac{21}{16}\left(a+b+c\right)+\dfrac{21}{48}.\dfrac{\left(a+b+c\right)^2}{a+b+c}\)
\(\Rightarrow7P\le\dfrac{7}{4}\left(a+b+c\right)\)
\(\Rightarrow P\le\dfrac{a+b+c}{4}\le\dfrac{3}{4}\)
Vậy \(P_{max}=\dfrac{3}{4}\) khi \(a=b=c=1\)
\(ab=\dfrac{1}{k}.a.kb\le\dfrac{1}{2k}\left(a^2+k^2b^2\right)\) , \(bc=\dfrac{1}{k}.c.kb\le\dfrac{1}{2k}\left(c^2+k^2b^2\right)\), \(3ac\le\dfrac{3}{2}\left(a^2+c^2\right)\)
\(\Rightarrow ab+cb+3ac\le a^2\left(\dfrac{1}{2k}+\dfrac{3}{2}\right)+c^2\left(\dfrac{1}{2k}+\dfrac{3}{2}\right)+b^2.k\)
Tìm k sao cho \(k=\dfrac{1}{2k}+\dfrac{3}{2}\). Khi đó \(a^2+b^2+c^2\ge\dfrac{1}{k}\)
Tìm ra \(k=\dfrac{3+\sqrt{17}}{4}\).Vậy \(S_{Min}=\dfrac{4}{3+\sqrt{17}}\)
\(C=ab+2bc+3ca=ab+ca+2bc+2ca\)
\(=a\left(b+c\right)+2c\left(a+b\right)\)
\(=a\left(1-a\right)+2c\left(1-c\right)=-a^2+a-2c^2+2c\)
\(=-\left(a-\frac{1}{2}\right)^2-2\left(c-\frac{1}{2}\right)^2+\frac{3}{4}\le\frac{3}{4}.\)
Vậy GTLN của C = \(\frac{3}{4}\)khi \(a=\frac{1}{2};c=\frac{1}{2};b=0.\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>C=ab+2bc+3ca=ab+ca+2bc+2ca
=a(b+c)+2c(a+b)
=a(1−a)+2c(1−c)=−a2+a−2c2+2c
=−(a−12 )2−2(c−12 )2+34 ≤34 .
Vậy GTLN của C = 34 khi a=12 ;c=12 ;b=0.
Ta có : a + b + c = 0
\( \implies\) b + c = - a ; a + b = - c
Ta có : ab + 2bc + 3ca
= ab + 2bc + ca + 2ca
= ( ab + ca ) + ( 2bc + 2ca )
= a ( b + c ) + 2c ( a + b )
= a ( - a ) + 2c ( - c )
= - a2 - 2c2
= - ( a2 + 2c2 ) ( * )
Mà : a2 \(\geq\) 0 ; 2c2 \(\geq\) 0
\( \implies\) a2 + 2c2 \(\geq\) 0 ( ** )
Từ ( * ) ; ( ** )
\( \implies\) - ( a2 + 2c2 ) \(\leq\) 0
\( \implies\) ab + 2bc + 3ca \(\leq\) 0
Tìm MAX thì được ,
ta có a+b+c=1 suy ra b+c=1-a;a+b=1-c
S=ab+2bc+3ca=ab+ac+2bc+2ca=a(b+c)+2c(b+a)=a(1-a)+2c(1-c)=3/4-[(a-1/2)^2+2(c-1/2)^2]<=3/4
Dấu "=" có khi a=c=1/2;b=0