K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 4 2019

Đặt \(\sqrt{x}=a\ge0;a\ne1\)

\(A=\frac{a-a^2}{\left(a+1\right)^2}=\frac{a-a^2}{a^2+2a+1}\)

\(\Leftrightarrow A.a^2+2A.a+A=a-a^2\)

\(\Leftrightarrow\left(A+1\right)a^2+\left(2A-1\right)a+A=0\)

\(\Delta=\left(2A-1\right)^2-4A\left(A+1\right)=-8A+1\ge0\Rightarrow A\le\frac{1}{8}\)

\(\Rightarrow A_{max}=\frac{1}{8}\) khi \(x=\frac{1}{9}\)

20 tháng 4 2019

bạn ơi chỉ cho mình cái dấu bằng xảy ra được không

26 tháng 12 2022

đợi tý

18 tháng 8 2023

Đã trả lời rồi còn độ tí đồ ngull

1 tháng 5 2023

Ta có :A=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\) -\(\dfrac{2\sqrt{x}-2}{\sqrt{x}-1}\) 

=\(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)-2

=\(\dfrac{-\sqrt{x}}{\sqrt{x}+1}\)

thay vào A=\(\dfrac{-2}{3}\)

b)

A=-1+\(\dfrac{1}{\sqrt{x}+1}\) \(\ge\) -1+\(\dfrac{1}{1}\)=1(vì \(\sqrt{x}\)\(\ge\) 0)

Dấu bằng xẩy ra\(\Leftrightarrow\) x=0

1 tháng 5 2023

chỗ đó cho thêm x-1 nha

đấu >= thay thành <= rùi nhân thêm x-1>=-1 nữa là lớn nhất bằng 0

21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

1 tháng 8 2017

E mới 7 - 8 thui !!! nhưng e sẽ cố giúp

a) \(A=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}.\frac{1-x^2}{2}\)

\(=\frac{x\sqrt{x}-3\sqrt{x}-2-x\sqrt{x}+\sqrt{x}-2x+2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\frac{1-x^2}{2}\)

\(=\frac{-2\sqrt{x}-2x}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\frac{1-x^2}{2}\)

\(=\frac{-2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(1-x\right)\left(x+1\right)}{2}\)

\(=\frac{2\left(\sqrt{x}+1\right)\left(x-1\right)\left(x+1\right)\sqrt{x}}{2\left(\sqrt{x}+1\right)\left(x-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(x+1\right)}{\sqrt{x}+1}\)

b )

ĐKXĐ : \(x\ge0\)

Vì \(\sqrt{x}+1>0\forall x\) Để \(A=\frac{\sqrt{x}\left(x+1\right)}{\sqrt{x}+1}>0\) \(\Leftrightarrow\sqrt{x}\left(x+1\right)>0\)

\(\Rightarrow\hept{\begin{cases}\sqrt{x}\ne0\\x+1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x>-1\end{cases}}}\) Mà theo đxxd thì \(x\ge0\) nên \(x>0\)

Vậy với \(x>0\) thì \(A>0\)

c ) Lớp 7 chưa bt làm :((

1 tháng 8 2017

E ghi rõ nèk

\(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)-\left(x-1\right)\left(\sqrt{x}+2\right)}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}\)

\(=\frac{\left(x\sqrt{x}+2x+\sqrt{x}-2x-4\sqrt{x}-2\right)-\left(x\sqrt{x}+2x-\sqrt{x}-2\right)}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}\)

\(=\frac{x\sqrt{x}-3\sqrt{x}-2-x\sqrt{x}-2x+\sqrt{x}-2}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}\)

21 tháng 6 2023

`C=(sqrtx+3)/(sqrtx-2)=(sqrtx-2+5)/(sqrtx-2)=1+5/(sqrtx-2)`

Ta cần tìm `max(5/(sqrtx-2))`

Nếu `0<=x<4` thì `5/(sqrtx-2)<0`

Nếu `x>4` thì `5/(sqrtx-2)>0`

Do đó ta chỉ xét `x>4` hay `x>=5(` Do `x` nguyên `)`

`=>sqrtx-2>=sqrt5-2`

`=>5/(sqrtx-2)<=5/(sqrt5-2)`

`=>C<=1+5/(sqrt5-2)=11+sqrt5`

Vậy `C_(max)=11+sqrt5<=>x=5`

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\). 2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:\(M=\left(a-b\right)\left(a+b-1\right)\). 3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\), \(OF=b\), \(EF=c\) và \(\widehat{OEF}=\alpha\), \(\widehat{OFE}=\beta\).1)i, Chứng minh rằng không có giá trị nào của a,b,c để biểu...
Đọc tiếp

1. Cho số nguyên dương x, tìm giá trị nhỏ nhất của biểu thức:

\(P=\dfrac{\left(x+1\right)^6}{\left(x^3+7\right)\left(x^3+3x^2+4\right)}\).

 

2. Cho \(a,b\ge0\) thỏa mãn \(a-\sqrt{a}=\sqrt{b}-b\), tìm giá trị nhỏ nhất của biểu thức:

\(M=\left(a-b\right)\left(a+b-1\right)\).

 

3. Cho \(\Delta OEF\) vuông tại O có \(OE=a\)\(OF=b\)\(EF=c\) và \(\widehat{OEF}=\alpha\)\(\widehat{OFE}=\beta\).

1)

i, Chứng minh rằng không có giá trị nào của a,b,c để biểu thức \(A=\dfrac{a+b}{c}+\dfrac{c}{a+b}\) nhận giá trị nguyên.

ii, Giả sử \(c\sqrt{ab}=\sqrt{2}\) , tìm giá trị nhỏ nhất của biểu thức \(B=\left(a+b\right)^2\).

2)

i, Tìm giá trị nhỏ nhất của biểu thức \(C=\dfrac{1}{\sin^2\alpha}+\dfrac{1}{\sin^2\beta}-2\left(\sin^2\alpha+\sin^2\beta\right)+\dfrac{\sin\alpha}{\tan\alpha}-\dfrac{\tan\alpha+\cos\beta}{\cot\beta}\) .

ii, Tìm điều kiện của \(\Delta OEF\) khi \(2\cos^2\beta-\cot^2\alpha+\dfrac{1}{\sin^2\alpha}=2\).

0
12 tháng 8 2020

a) x = 16 (tm) => A = \(\frac{\sqrt{16}-2}{\sqrt{16}+1}=\frac{4-2}{4+1}=\frac{2}{5}\)

b) B = \(\left(\frac{1}{\sqrt{x}+5}-\frac{x+2\sqrt{x}-5}{25-x}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)

B = \(\frac{\sqrt{x}-5+x+2\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)

B = \(\frac{x+3\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{x+5\sqrt{x}-2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

c) P = \(\frac{B}{A}=\frac{\sqrt{x}-2}{\sqrt{x}+2}:\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

=> \(P\left(\sqrt{x}+2\right)\ge x+6\sqrt{x}-13\)

<=> \(\frac{\sqrt{x}+1}{\sqrt{x}+2}.\left(\sqrt{x}+2\right)-x-6\sqrt{x}+13\ge0\)

<=> \(-x-6\sqrt{x}+13+\sqrt{x}+1\ge0\)

<=> \(-x-5\sqrt{x}+14\ge0\)

<=> \(x+5\sqrt{x}-14\le0\)

<=> \(x+7\sqrt{x}-2\sqrt{x}-14\le0\)

<=> \(\left(\sqrt{x}+7\right)\left(\sqrt{x}-2\right)\le0\)

Do \(\sqrt{x}+7>0\) với mọi x => \(\sqrt{x}-2\le0\)

<=> \(\sqrt{x}\le2\) <=> \(x\le4\)

Kết hợp với Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)25

và x thuộc Z => x = {0; 1; 2; 3}

d) M = \(3P\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\) <=>M = \(3\cdot\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\)

M = \(\frac{3\sqrt{x}+3}{x+\sqrt{x}+4}=\frac{x+\sqrt{x}+4-x+2\sqrt{x}-1}{\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{15}{4}}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}}\le1\)(Do \(\left(\sqrt{x}-1\right)^2\ge0\) và \(\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}>0\))

Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\) <=> \(x=1\)

Vậy MaxM = 1 khi x = 1