K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2021

mọi người ơi giúp mk vs ạ 

mk gấp lắm rồi ạ

27 tháng 5 2021

\(M=5x^2+y^2-2x+2y+2xy+2004\)

\(=\left(x^2+2x+1\right)+2y\left(x+1\right)+y^2+4x^2-4x+1+2002\)

\(=\left(x+1\right)^2+2y\left(x+1\right)+y^2+\left(2x-1\right)^2+2002\)

\(=\left(x+1+y\right)^2+\left(2x-1\right)^2+2003\ge2002\) với mọi x,y

=> \(M_{min}=2002\Leftrightarrow\left\{{}\begin{matrix}x+y+1=0\\2x-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(M_{min}=2002\)

27 tháng 5 2021

Dòng 4 toi viết nhầm nha, là +2002 

NV
25 tháng 12 2020

\(x+y=2\Rightarrow y=2-x\)

\(P=2x^2-\left(2-x\right)^2-5x+\dfrac{1}{x}+2020=x^2-x+\dfrac{1}{x}+2016\)

\(P=x^2+1-x+\dfrac{1}{x}+2015\ge2x-x+\dfrac{1}{x}+2015\)

\(P\ge x+\dfrac{1}{x}+2015\ge2\sqrt{\dfrac{x}{x}}+2015=2017\)

Dấu "=" xảy ra khi \(x=y=1\)

28 tháng 4 2015

2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16)  + 3997

= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997

Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z

Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N

<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024 

=> M \(\ge\)2012

vậy Min M  = 2012

khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3

 

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

18 tháng 1 2019

\(2x+y=6\Leftrightarrow x=\frac{6-y}{2}\)

a) \(A=2x^2+y^2=2\left(\frac{6-y}{2}\right)^2+y^2=\frac{2\left(6-y\right)^2}{4}+y^2\)

\(=\frac{2\left(36-12y+y^2\right)}{4}+y^2\)

\(=\frac{36-12y+y^2}{2}+\frac{2y^2}{2}=\frac{3y^2-12y+36}{2}\)

\(=\frac{3\left(y-2\right)^2+24}{2}\ge\frac{24}{2}=12\)(dấu "=" xảy ra khi y =2)

Vậy Min A = 12 khi y = 2

b) \(6=2x+y\ge2\sqrt{2xy}=2\sqrt{2B}\)

Suy ra \(8B\le36\Leftrightarrow B\le\frac{9}{2}\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}2x=y\\2x+y=6\end{cases}}\Leftrightarrow2x=y=3\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=3\end{cases}}\)

Vậy Max \(B=\frac{9}{2}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}\\y=3\end{cases}}\)

AH
Akai Haruma
Giáo viên
13 tháng 3 2022

Lời giải:
Ta có:

$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$

$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$

$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$

$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$

$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$

Vậy $P_{\min}=5$. Giá trị này đạt tại:

$x+y+\frac{1}{2}=x+2=0$

$\Leftrightarrow x=-2; y=\frac{3}{2}$

AH
Akai Haruma
Giáo viên
13 tháng 3 2022

Lời giải:
Ta có:

$P=2x^2+y^2+2xy+5x+y+\frac{37}{4}$

$=(x^2+y^2+2xy)+x^2+5x+y+\frac{37}{4}$

$=(x+y)^2+(x+y)+(x^2+4x)+\frac{37}{4}$

$=(x+y)^2+(x+y)+\frac{1}{4}+(x^2+4x+4)+5$

$=(x+y+\frac{1}{2})^2+(x+2)^2+5\geq 5$

Vậy $P_{\min}=5$. Giá trị này đạt tại:

$x+y+\frac{1}{2}=x+2=0$

$\Leftrightarrow x=-2; y=\frac{3}{2}$

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Lời giải:

$A=5x^2+y^2+4xy-2x-2y+2020$

$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$

$=(2x+y)^2-2(2x+y)+x^2+2x+2020$

$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$

$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$

Hay $x=-1; y=3$