K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 4 2019

Gọi M là trung điểm BC \(\Rightarrow AM\perp BC\Rightarrow BC\perp\left(SAM\right)\)

\(\Rightarrow\widehat{SMA}=60^0\Rightarrow SA=AM.tan60^0=\frac{a\sqrt{3}}{2}.\sqrt{3}=\frac{3a}{2}\Rightarrow h=\frac{3a}{2}\)

Từ A kẻ \(AH\perp SM\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH=d\left(A;\left(SBC\right)\right)\)

Áp dụng hệ thức lượng:

\(\frac{1}{AH^2}=\frac{1}{SA^2}+\frac{1}{AM^2}\Rightarrow AH=\frac{SA.AM}{\sqrt{SA^2+AM^2}}=\frac{3a}{4}\)

1 tháng 2 2017

Đáp án A

4 tháng 7 2017

+ Gọi H là trung điểm của BC

Do tam giác ABC cân tại A nên AH ⊥ BC, tam giác SBC đều nên SH  ⊥ BC

Mà (SBC)  ⊥ (ABC)

Do đó SH  ⊥ (ABC)

+ Gọi K là hình chiếu vuông góc của H lên SA ⇒  HK ⊥ SA

Ta có  B C ⊥ S H B C ⊥ A H ⇒ B C ⊥ S A H ⇒ B C ⊥ H K

Vậy HK là đoạn vuông góc chung của BC và SA, do đó khoảng cách giữa BC và SA là HK.

+ Tính HK

Tam giác SBC đều cạnh a ⇒  SH =  a 3 2

Tam giác ABC vuông cân tại A ⇒  AH =  B C 2 = a 2

Tam giác SHA vuông tại H có HK là đường cao ⇒ 1 H K 2 = 1 S H 2 + 1 A H 2  

HK =  a 3 4

Vậy d(SA; BC) = a 3 4 .

Đáp án C

17 tháng 9 2017

8 tháng 4 2018

Đáp án D

10 tháng 9 2017

8 tháng 7 2019

Gọi M là trung điểm BC, suy ra 

Gọi K là hình chiếu của A trên SM suy ra  A K ⊥ S M

Từ (1) và (2) suy ra 

Trong ∆ SAM,  có 

Vậy 

Chọn A.

5 tháng 6 2017

Chọn A

31 tháng 5 2016

Cho hình chó p S. ABC có đáy ABC là tam giác vuông cân tại A, mặt bên SBC là tam giác đều cạnh a và mặt phẳng (SBC) vuông góc với mặt đáy. Tính theo a thể tích khối chóp S.ABC và khoảng cách giữa hai đường thẳng SA, BC.

31 tháng 5 2016

Nguyễn Khắc Sinh là Nguyen Quang Trung tự hỏi tự trả lời

26 tháng 1 2019

Đáp án A

 

9 tháng 2 2018