cho đt (O) VÀ 1 điểm A nằm ngoài đường tròn .Các tiếp tuyến với đt (O) kẻ từ A tiếp xúc với đt (O)tại B và C .Gọi M là điểm tùy ý trên đt (M khác B,C).Từ M kẻ MH vuông góc với BC , MK vuông góc với CA , MI vuông góc với AB. Chứng minh
a, tứ giác ABOC nội tiếp
b, góc BAC = góc BCO
C, Tam giác MIH đồng dạng với tam giác MHK
d, MI.MK=MH^2
GIÚP MÌNH NHANH PHẦN c VỚI
\(\widehat{MKH}=\widehat{MCH}\)
c) Tam giác COA=tam giác BOA ( tự chứng minh)
=> \(\widehat{COA}=\widehat{BOA}\)(1)
Ta có: MK//OC ( cùng vuông AC)
MH//OA ( cùng vuông BC)
=> \(\widehat{KMH}=\widehat{AOC}\)(2)
Tương tự chứng minh đc: \(\widehat{HMI}=\widehat{AOB}\)(3)
Từ 1, 2, 3 => \(\widehat{KMH}=\widehat{HMI}\)(4)
Tứ giác KMHC nội tiếp ( tự chứng minh)
=> \(\widehat{MKH}=\widehat{MCH}\)( cùng chắn cung MH) (5)
Tứ giác MIBH nội tiếp ( tự chứng minh)
=> \(\widehat{MHI}=\widehat{MBI}\) (cùng chắn cung MI)(6)
Mà \(\widehat{MCH}=\widehat{MBI}\)( cùng chắn cung MB của đường tròn (O)) (7)
Từ (5), (6), (7)
=> \(\widehat{MKH}=\widehat{MHI}\)(8)
Xét tam giác KMH và tam giác HMI có:
\(\widehat{KMH}=\widehat{HMI}\)(theo (4))
\(\widehat{MKH}=\widehat{MHI}\)( theo (8)
=> tam giác KMH đông dạng tam giác HMI