Cho tam gica ABC cân (AB=AC) có góc BAC=100 độ. Qua B dựng tia BX tạo với BC một góc bằng 30 độ, trong đó tia Bx nằm giữa BA và BC. Dựng tia phân giác của góc ACB cắt Bx tại I.
a, CM: tam giác CAI cân
b, tính số đo góc BAI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) \(\Delta\)ABC cân => \(\hept{\begin{cases}AB=AC\left(1\right)\\\widehat{ABC}=\widehat{ACB}\end{cases}}\)
Ta có: \(\widehat{BAC}=100^o\)=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}=40^o\)
\(\widehat{IBC}=\widehat{ABC}-\widehat{ABI}=40^o-10^o=30^o\)
\(\widehat{ACI}=\widehat{BCI}=\frac{\widehat{ACB}}{2}=\frac{40^o}{2}=20^o\)(i)
+) Trên nửa mặt phẳng bờ AC chứa B lấy điểm K sao cho \(\Delta\)AKC đều => \(\hept{\begin{cases}\widehat{KAC}=\widehat{ACK}=\widehat{AKC}=60^o\\AK=KC=AC\left(2\right)\end{cases}}\)
=> \(\widehat{BAK}=\widehat{BAC}-\widehat{KAC}=100^o-60^o=40^o\)
Từ (1); (2) => AB=AK => \(\Delta\)ABK cân tại A => \(\widehat{ABK}=\widehat{AKB}=\frac{180^o-\widehat{BAK}}{2}=70^o\)
=> \(\widehat{KBC}=\widehat{ABK}-\widehat{ABC}=70^o-40^o=30^o\)
\(\widehat{KCB}=\widehat{KCA}-\widehat{ACB}=60^o-40^o=20^o\)
+) Xét \(\Delta\)BIC và \(\Delta\)BKC có:
\(\widehat{IBC}=\widehat{KBC}\left(=30^o\right)\)
BC chung
\(\widehat{ICB}=\widehat{KCB}\left(=20^o\right)\)
=> \(\Delta\)BIC = \(\Delta\)BKC
=> CK =CI (3)
(2); (3) => CI =CA => \(\Delta\)ACI cân tại C
b) \(\Delta\)ACI cân tại C có: \(\widehat{ACI}=20^o\) (theo (i) )
=> \(\widehat{CIA}=\widehat{CAI}=\frac{180^o-\widehat{ACI}}{2}=80^o\)
=> \(\widehat{BAI}=\widehat{BAC}-\widehat{CAI}=100^o-80^o=20^o\)
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
Suy ra: BD=CE(hai cạnh tương ứng)
b) Ta có: ΔABD=ΔACE(cmt)
nên AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
Câu c. lên lớp 8 thì em có thể dùng đường trung bình dễ hơn nhiều nhé.
a) Ta có:
\(\widehat{A}+\widehat{ABC}+\widehat{BCA}=180\)
\(\Rightarrow\widehat{BCA}=180-90-60=30\)
Vì \(BC\perp Cy\Rightarrow\widehat{BCy}=90\)
Mà \(\widehat{BCy}+\widehat{ECF}+\widehat{BCA}=180\)
\(\Rightarrow\widehat{ECF}=180-90-30=60\left(1\right)\)
Vì \(\widehat{FBC}+\widehat{BCA}+\widehat{BFC}=180\)
\(\Rightarrow\widehat{BFC}=180-\frac{\widehat{ABC}}{2}-\widehat{BCA}\)
\(\Rightarrow\widehat{BFC}=60\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\)\(\Rightarrow\Delta CEF\)là tam giác đều
a) Xét ΔABC∆ABC vuông tại AA
ˆABC=60oABC^=60o
⇒ACB=30o⇒ACB=30o
Ta có: BEBE là phân giác của ˆBB^
⇒ˆCBE=12ˆABC=30o⇒CBE^=12ABC^=30o
⇒ˆFEC=ˆECB+ˆEBC=60o⇒FEC^=ECB^+EBC^=60o
Xét ΔCBF∆CBF vuông tại CC có:
ˆCBF=30oCBF^=30o
⇒ˆCFB=60o⇒CFB^=60o
Xét ΔCEF∆CEF có:
ˆFEC=ˆCFB=60oFEC^=CFB^=60o
Do đó ΔCEG∆CEG đều
b) Sửa đề: ABCDABCD là hình thang cân
Ta có:
ˆBAC=ˆBDC=90oBAC^=BDC^=90o
Do đó ABCDABCD là tứ giác nội tiếp
⇒ˆACB=ˆADB=30o⇒ACB^=ADB^=30o
Ta lại có: ˆDBC=ˆACB=30oDBC^=ACB^=30o
nên ˆABD=ˆDBCABD^=DBC^
⇒ABCD⇒ABCD là hình thang đáy AB,CDAB,CD
Mặt khác: ΔDBC∆DBC vuông tại DD có:
ˆDBC=30oDBC^=30o
⇒ˆDCB=60o=ˆABC⇒DCB^=60o=ABC^
Do đó ABCDABCD là hình thang cân
Câu hỏi của •Ƙ - ƔℌŤ⁀ᶦᵈᵒᶫ - Toán lớp 7 - Học toán với OnlineMath