K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tối nay mk sẽ trả lời , đợi nha, mk đi hk đã

ta có:

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\),

 \(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}...\)

\(\frac{1}{10^2}=\frac{1}{10\cdot10}< \frac{1}{9\cdot10}\)

Từ trên => A < \(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

=> \(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{9}-\frac{1}{10}\)

=> \(A< \frac{1}{2}-\frac{1}{10}=\frac{5}{10}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)

=> \(A< \frac{2}{5}\)mà \(\frac{2}{5}< \frac{1}{2}\)

=> \(A< \frac{1}{2}\)=> \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< \frac{1}{2}\)

Chúc bn học tốt !

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

28 tháng 6 2016

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

                                                       \(< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

                                                         \(< 1-\frac{1}{100}< 1\)

=> đpcm

28 tháng 6 2016

giúp mình với nhé các bạn !

26 tháng 8 2020

Bài làm:

Ta có: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\)

=> \(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\)

=> \(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2016}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2017}}\right)\)

<=> \(2B=1-\frac{1}{3^{2017}}\)

=> \(B=\frac{1}{2}-\frac{1}{3^{2017}.2}< \frac{1}{2}\)

=> \(B< \frac{1}{2}\)