Tìm x thuộc Z để A thuộc Z
A= \(\frac{3x}{x+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
a) A xác định \(\Leftrightarrow\hept{\begin{cases}3x\ne0\\x+1\ne0\\2-4x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ne\frac{1}{2}\end{cases}}}\)
\(A=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}-\frac{3x+1-x^2}{3x}\)
\(A=\left[\frac{\left(x+2\right)\left(x+1\right)}{3x\left(x+1\right)}+\frac{2\cdot3x}{3x\left(x+1\right)}-\frac{3\cdot3x\left(x+1\right)}{3x\left(x+1\right)}\right]\cdot\frac{x+1}{2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{x^2+3x+2+6x-9x^2-9x}{3x\left(x+1\right)}\cdot\frac{x+1}{2\cdot\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{\left(-8x^2+2\right)\left(x+1\right)}{3x\left(x+1\right)2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-4x^2\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2\left(1-2x\right)\left(1-2x\right)}{3x\cdot2\left(1-2x\right)}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{1+2x}{3x}-\frac{3x+1-x^2}{3x}\)
\(A=\frac{2x+1-3x-1+x^2}{3x}\)
\(A=\frac{x^2-x}{3x}\)
\(A=\frac{x\left(x-1\right)}{3x}\)
\(A=\frac{x-1}{3}\)
b) Thay x = 4 ta có :
\(A=\frac{4-1}{3}=\frac{3}{3}=1\)
c) Để A thuộc Z thì \(x-1⋮3\)
\(\Rightarrow x-1\in B\left(3\right)=\left\{0;3;6;...\right\}\)
\(\Rightarrow x\in\left\{1;4;7;...\right\}\)
Vậy.....
ĐKXĐ x khác 3,-1/3
\(A=\frac{3x^3-9x^2-5x^2+15x-12x+36}{3x^3-9x^2-10x^2+30x+3x-9}\)
\(=\frac{3x^2\left(x-3\right)-5x\left(x-3\right)-12\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
\(=\frac{\left(x-3\right)\left(3x^2-5x-12\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
\(=\frac{3x^2-5x-12}{3x^2-10x+3}=\frac{\left(x-3\right)\left(3x+4\right)}{\left(x-3\right)\left(3x-1\right)}\)
\(=\frac{3x+4}{3x-1}\)
b,với ĐKXĐ ta có \(A=0\Leftrightarrow\frac{3x+4}{3x-1}=0\Leftrightarrow3x+4=0\Leftrightarrow x=\frac{-4}{3}\left(tm\right)\)
c,\(\frac{3x+4}{3x-1}=\frac{3x-1+5}{3x-1}=1+\frac{5}{3x-1}\)
để A thuộc z thì \(\frac{5}{3x-1}\in Z\Rightarrow3x-1\inƯ\left(5\right)\) đến đây bạn tìm ước của 5 rồi tự giải nhé
\(A=\frac{3x+1}{x-1}=\frac{3\left(x-1\right)+4}{x-1}=1+\frac{4}{x-1}\)
Để A nguyên thì \(\frac{4}{x-1}\) nguyên
\(\Rightarrow x-1\inƯ\left(4\right)\)
\(\Rightarrow x-1\in\left\{1;4;-1;-4\right\}\)
\(\Rightarrow x\in\left\{2;5;0;-3\right\}\)
A thuộc Z
\(\Rightarrow3x⋮x+1\)
\(\Leftrightarrow3x+3-3⋮x+1\)
\(\Leftrightarrow3\left(x+1\right)-3⋮x+1\)
Vì \(3\left(x+1\right)⋮x+1\)
\(\Rightarrow-3⋮x+1\)
\(\Rightarrow x+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{0;-2;2;-4\right\}\)
Vậy....
Giả sử A thuộc Z
=> 3x chia hết cho x+1
Ta có 3x chia hết cho x+1 và x+1 chia hết cho x+1
......
=>3x+3- (3x) chia hết cho x + 1
=>3 chia hết cho x + 1
=> x + 1 thuộc ước của 3 = { -3; -1; 1; 3}
Ta có ( pp thử )
.................................