K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 4 2019

\(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=3\end{matrix}\right.\)

Gọi \(\left\{{}\begin{matrix}x_3=x_1^2+1\\x_4=x_2^2+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=x_1^2+x_2^2+2\\x_3x_4=\left(x_1^2+1\right)\left(x_2^2+1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\left(x_1+x_2\right)^2-2x_1x_2+2\\x_3x_4=\left(x_1x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=25-6+2=21\\x_3x_4=9+25-6+1=29\end{matrix}\right.\)

Theo Viet đảo, \(x_3;x_4\) là nghiệm của: \(x^2-21x+29=0\)

11 tháng 2 2023

a)

\(m=6\)

\(\Rightarrow x^2+5x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

b)

\(\left|x_1-x_2\right|=3\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)

\(\Leftrightarrow x_1^2=2x_1x_2+x^2_2=9\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)

Mà \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1-x_2=m\end{matrix}\right.\)

\(\Rightarrow25-4m=9\)

\(\Leftrightarrow4m=16\)

\(\Leftrightarrow m=4\)

 

NV
16 tháng 1 2024

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-1\end{matrix}\right.\)

Gọi \(x_3;x_4\) là các nghiệm của pt nhận \(\dfrac{1}{x_1};\dfrac{1}{x_2}\) là nghiệm, ta có:

\(\left\{{}\begin{matrix}x_3+x_4=\dfrac{1}{x_1}+\dfrac{1}{x_2}\\x_3x_4=\dfrac{1}{x_1}.\dfrac{1}{x_2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{x_1+x_2}{x_1x_2}\\x_3x_4=\dfrac{1}{x_1x_2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{2m}{m-1}\\x_3x_4=\dfrac{1}{m-1}\end{matrix}\right.\)

Theo định lý Viet đảo, \(x_3;x_4\) là nghiệm của:

\(x^2-\dfrac{2m}{m-1}x+\dfrac{1}{m-1}=0\)

Hoặc là: \(\left(m-1\right)x^2-2mx+1=0\) (với \(m\ne1\))

6 tháng 1 2023

Ptr có: `a+b+c=1-2m+2+2m-3=0`

   `=>[(x=1),(x=c/a=2m-3):}`

`@TH1: x_1=1;x_2=2m-3`

  `=>\sqrt{1}=2\sqrt{2m-3}`

`<=>\sqrt{2m-3}=1/2`

`<=>2m-3=1/4`

`<=>m=13/8`

`@TH2:x_1=2m-3;x_2=1`

  `=>\sqrt{2m-3}=2\sqrt{1}`

`<=>2m-3=4`

`<=>m=7/2`

3 tháng 2 2021

Theo định lí Viet \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1^4+x_2^4=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2=727\\y_1y_2=x_1^4x_2^4=1\end{matrix}\right.\)

Phương trình cần tìm có dạng \(ax^2+bx+c=0\left(1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{a}=727\\\dfrac{c}{a}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=-727a\\c=a\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow ax^2-727ax+a=0\)

\(\Leftrightarrow x^2-727x+1=0\)

9 tháng 5 2021

a, - Thay m = 6 vào phương trình ta được : \(x^2-5x+6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy ...

b, - Xét phương trình trên có : \(\Delta=b^2-4ac=25-4m\)

- Để phương trình có 2 nghiệm phân biệt <=> \(m< \dfrac{25}{4}\)

- Theo viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)

- Ta có : \(\left|x_1-x_2\right|=3\)

\(\Leftrightarrow x^2_1+x^2_2-2\left|x_1x_2\right|=\left(x_1+x_2\right)^2-2\left(x_1x_2+\left|x_1x_2\right|\right)=9\)

\(\Leftrightarrow m+\left|m\right|=8\)

\(\Leftrightarrow2m=8\)

\(\Leftrightarrow m=4\)

Vậy ...

Δ=(-4)^2-4(2m-2)

=16-8m+8=-8m+24

Để phương trình có hai nghiệm phân biệt thì -8m+24>0

=>m<3

x1+x2=2x1x2

=>2(2m-2)=4

=>2m-2=2

=>2m=4

=>m=2(nhận)

27 tháng 2 2021

Áp dụng hệ thức Vi-ét ta có:
y1+y2= 3x1+3x2=3(x1+x2)
=\(\dfrac{-3b}{a}\)
y1y2=\(\dfrac{9c}{a}\)
Ta có pt x^2 +\(\dfrac{3b}{a}x+\dfrac{9c}{a}=0\)

8 tháng 5 2021

a. thay m=-4 vào (1) ta có:

\(x^2-5x-6=0\)

Δ=b\(^2\)-4ac= (-5)\(^2\) - 4.1.(-6)= 25 + 24= 49 > 0

\(\sqrt{\Delta}=\sqrt{49}=7\)

x\(_1\)=\(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+7}{2}\)=6

x\(_2\)=\(\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-7}{2}\)=-1

vậy khi x=-4 thì pt đã cho có 2 nghiệm x\(_1\)=6; x\(_2\)=-1

 

13 tháng 5 2017

Ứng dụng hệ thức viet thì ptr đó là x2-(x1+x2)x+x1x2=0