K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2019

C=-104

C=x2+4x-100=(x2+4x+4)-104=(x+2)2-104\(\ge\)-104

Dấu "="xảy ra khi x+2=0=>x=-2

12 tháng 1 2015

Ta thấy:      |x-10| >= 0      (1);          |x-10| >= 0        (2)

Cộng 2 bđt cùng chiều (1) và (2) ta được:   |x-10| + |x-10| >= 0    <=>  A= |x-10| + |x-10| -2 >= -2

=> minA = -2  

Dấu đẳng thức xảy ra khi và chỉ khi x=10 và y=-100

 Chắc v!! =)))

      

29 tháng 8 2020

Ta có:

\(B=\left|x-1\right|+\left|x-2\right|+...+\left|x-100\right|\)

\(B=\left(\left|x-1\right|+\left|100-x\right|\right)+\left(\left|x-2\right|+\left|99-x\right|\right)+...+\left(\left|x-50\right|+\left|51-x\right|\right)\)

\(\ge\left|x-1+100-x\right|+\left|x-2+99-x\right|+...+\left|x-50+51-x\right|\)

\(=99+97+...+1=2500\)

Dấu "=" xảy ra khi: \(x=\frac{101}{2}\)

NV
17 tháng 4 2022

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN

26 tháng 7 2016

Với x>0thif D=x+x=2x>0                                  (1)

Với \(x\le0\) thì D=x-x=0                                 (2)

Từ (1) và(2) =>:GTNN của D bằng 0 khi và chỉ khi \(x\le0\)

mk nhé bạn ^...^ ^_^

19 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{6x+9}{3x+2}=\frac{6x+4+5}{3x+2}=\frac{6x+4}{3x+2}+\frac{5}{3x+2}=\frac{2\left(3x+2\right)}{3x+2}+\frac{5}{3x+2}=2+\frac{5}{3x+2}\)

Để A có giá trị nguyên thì \(\frac{5}{3x+2}\) phải nguyên hay \(5\) chia hết cho \(3x+2\)\(\Rightarrow\)\(\left(3x+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3x+2\)\(1\)\(-1\)\(5\)\(-5\)
\(x\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(x\) là số nguyên nên \(x\in\left\{-1;1\right\}\)

Vậy \(x\in\left\{-1;1\right\}\)

Chúc bạn học tốt ~ 

19 tháng 4 2018

\(b)\) Ta có bất đẳng thức giá trị tuyệt đối như sau : 

\(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)

Dấu "=" xảy ra khi và chỉ khi \(xy\ge0\)

Áp dụng vào ta có : 

\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=\left|8\right|=8\)

Dấu "=" xảy ra khi và chỉ khi \(x\left(8-x\right)\ge0\)

Trường hợp 1 : 

\(\hept{\begin{cases}x\ge0\\8-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\le8\end{cases}\Leftrightarrow}0\le x\le8}\)

Trường hợp 2 : 

\(\hept{\begin{cases}x\le0\\8-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le0\\x\ge8\end{cases}}}\) ( loại ) 

Vậy GTNN của \(A=8\) khi \(0\le x\le8\)

Chúc bạn học tốt ~ 

22 tháng 7 2017

\(x^2+2xy+y^2\) +\(y^2-4y+4+1\)

=\(\left(x+y\right)^2+\left(y-2\right)^2+1\ge1\)

dau = xay ra \(\Leftrightarrow y=2\),\(x=-2\)

min M =1 khi x=-2 y=2

14 tháng 8 2023

a) *Xét x=0

==> Giá trị A=2022!(1)

*Xét 0<x≤2022

==> A=0(2)

*Xét x>2022

==> A≥2022!(3)

Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022

Mà để xmax ==> x=2022 

Vậy ...

b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)

Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất

Mà x-2021≠0 =>x-2021=1==>x=2022

Khi đó Bmax=6057

Vậy...

 

6 tháng 2 2019

Ta có :\(y=\frac{x^2+2}{x^2+x+1}\)

\(\Leftrightarrow yx^2+yx+y=x^2+2\)

\(\Leftrightarrow x^2\left(y-1\right)+yx+y-2=0\)(1)

*Xét y = 1 thì pt trở thành \(x-1=0\)

                                   \(\Leftrightarrow x=1\)

*Xét \(y\ne1\)thì pt (1) là pt bậc 2 ẩn x

Có \(\Delta=y^2-4\left(y-1\right)\left(y-2\right)\)

         \(=y^2-4\left(y^2-3y+2\right)\)

          \(=y^2-4y^2+12y-8\)

         \(=-3y^2+12y-8\)

Pt (1) có nghiệm khi \(\Delta\ge0\)

                         \(\Leftrightarrow-3y^2+12y-8\ge0\)

                         \(\Leftrightarrow\frac{6-2\sqrt{3}}{3}\le y\le\frac{6+2\sqrt{3}}{3}\)

6 tháng 2 2019

bạn icu... làm đúng rồi

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2