tính A = (-1) mũ 1 + (-1) mũ 2 + (-1) mũ 3 + .....+ (-1) mũ 100/1 + 2 + 3 + ....+ 2010
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Trần Thuỳ Trang - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo.
Đặt A=1/10+1/40+1/88+1/154+1/238+1/340
A=1/2.5+1/5.8+1/8.11+1/11.14+1/14.17+1/17.20
3A=3/2.5+3/5.8+....+3/17.20
3A=1/2-1/5+1/5-1/8+...+1/17-1/20
3A=1/2-1/20
3A=9/20
2)
Giữ nguyên p/s 1/2^2
Ta có:1/3^2<1/2.3
1/4^2<1/3.4
...............
1/n^2<1/(n-1).n
=>1/3^2+1/4^2+...+1/n^2<1/2.3+1/3.4+...+1/(n-1).n
=>1/3^2+1/4^2+.....+1/n^2<1/2-1/3+1/3-1/4+.........+1/n-1-1/n
=>1/2^2+1/3^2+.....+1/n^2<1/2^2+1/2-1/n
=>1/2^2+1/3^2+....+1/n^2<3/4-1/n<3/4
3)
2B=2/3.5+2/5.7+....+2/47.49+2/49.51
2B=1/3-1/5+1/5-1/7+.....+1/47-1/49+1/49-1/51
2B=1/3-1/51
2B=16/51
B=16/51:2
B=8/51
A=1+1/2+1/2^2+...+1/2^2010
2A=2+1+1/2+....+1/2^2009
2A-A=(2+1+1/2+...+1/2^2009)-(1+1/2+1/2^2+....+1/2^2010)
A=2-1/2^2010
a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)
\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)
\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)
\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)
\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)
Các ý dưới bạn làm tương tự nhé.
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
\(a,S=1+3+3^2+....+3^{100}.\)
\(\Rightarrow3S=3+3^2+...+3^{101}\)
\(\Rightarrow3S-S=\left(3+3^2+...+3^{101}\right)-\left(1+3+....+3^{100}\right)\)
\(\Rightarrow2S=3^{101}-1\)
\(\Rightarrow S=\frac{3^{101}-1}{2}\)
\(b,A=1+3^2+3^4+...+3^{100}\)
\(\Rightarrow3^2A=3^2+3^4+...+3^{102}\)
\(\Rightarrow9A-A=\left(3^2+3^4+...+3^{102}\right)-\left(1+3^2+....+3^{100}\right)\)
\(\Rightarrow8A=3^{102}-1\)
\(\Rightarrow A=\frac{3^{102}-1}{8}\)
\(A=2^0+2^1+2^2+...+2^{2010}\)
\(2A=2^1+2^2+2^3+...+2^{2021}\)
\(2A-A=\left(2^1+2^2+2^3+...+2^{2021}\right)-\left(2^0+2^1+2^2+...+2^{2020}\right)\)
\(A=2^{2021}-1\)
\(A=\frac{\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{100}}{1+2+3+...+2010}\)
\(\Leftrightarrow A=\frac{\left(-1\right)+1+\left(-1\right)+...+\left(-1\right)}{1+2+3+...+2010}\)
\(\Leftrightarrow A=\frac{0}{1+2+3+...+2010}\)
\(\Leftrightarrow A=0\)