K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 3 2021

a.

\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)

b.

\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)

c.

\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)

5 tháng 7 2021

1,\(VT=\dfrac{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}+\dfrac{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}\)\(=\dfrac{sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)^2+cos^2\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}{cos\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right).sin\left(\dfrac{\pi}{4}+\dfrac{x}{2}\right)}\)

\(=\dfrac{1}{\dfrac{1}{2}.sin\left(\dfrac{\pi}{2}+x\right)}=\dfrac{2}{cosx}=VP\)

2,\(VT=\left(sin^4x-cos^4x\right)\left(sin^4x+cos^4x\right)=\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\left[\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x\right]\)

\(=\left(sin^2-cos^2x\right)\left(1-2sin^2x.cos^2x\right)\)\(=-cos2x\left(1-\dfrac{1}{2}sin^22x\right)\)\(=-\dfrac{cos2x\left(2-sin^22x\right)}{2}=-\dfrac{cos2x\left(1+cos^22x\right)}{2}\)

\(VP=-\left(\dfrac{7}{8}cos2x+\dfrac{1}{8}cos6x\right)=-\dfrac{7}{8}cos2x-\dfrac{1}{8}\left[4cos^32x-3cos2x\right]=-\dfrac{7}{8}.cos2x-\dfrac{1}{2}cos^32x+\dfrac{3}{8}cos2x\)

\(=-\dfrac{1}{2}cos2x-\dfrac{1}{2}cos^32x=\dfrac{-cos2x\left(1+cos^22x\right)}{2}\)

\(\Rightarrow VT=VP\)(đpcm)

3, \(VT=3-4\left(1-2sin^2x\right)+1-2sin^22x=8sin^2x-2sin^22x=8sin^2x-8.sin^2x.cos^2x=8sin^2x\left(1-cos^2x\right)=8sin^4x=VP\)

4,\(VP=\dfrac{1}{2}\left[sin\left(x+\dfrac{\pi}{2}\right)+sin\left(3x+\dfrac{\pi}{6}\right)\right]-\dfrac{1}{2}\left[cos\left(3x-\dfrac{\pi}{3}\right)+cos\left(x+\pi\right)\right]\)

\(=\dfrac{1}{2}\left(cosx+sin3x.\dfrac{\sqrt{3}}{2}+\dfrac{cos3x}{2}\right)-\dfrac{1}{2}\left(\dfrac{cos3x}{2}+sin3x.\dfrac{\sqrt{3}}{2}-cosx\right)\)

\(=\dfrac{1}{2}.2cosx=cosx=VP\)

5, \(VP=4cos\left(2x-\dfrac{\pi}{6}\right).\left(sinx.\dfrac{\sqrt{3}}{2}+\dfrac{cosx}{2}\right)^2\)\(=cos\left(2x-\dfrac{\pi}{6}\right).\left(sinx.\sqrt{3}+cosx\right)^2\)

\(VT=2.cos\left(2x-\dfrac{\pi}{6}\right)+2.sin\left(2x-\dfrac{\pi}{6}\right).cos\left(2x-\dfrac{\pi}{6}\right)=2cos\left(2x-\dfrac{\pi}{6}\right)\left[1+sin\left(2x-\dfrac{\pi}{6}\right)\right]\)

\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(1+\dfrac{sin2x.\sqrt{3}}{2}-\dfrac{cos2x}{2}\right)\)\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x+cos^2x+sinx.cosx.\sqrt{3}-\dfrac{cos^2x-sin^2x}{2}\right)\)

\(=2cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x.\dfrac{3}{2}+sinx.cosx.\sqrt{3}+\dfrac{cos^2x}{2}\right)\)\(=cos\left(2x-\dfrac{\pi}{6}\right)\left(sin^2x.3+2sinx.cosx.\sqrt{3}+cos^2x\right)\)

\(=cos\left(2x-\dfrac{\pi}{6}\right)\left(sinx.\sqrt{3}+cosx\right)^2\)

\(\Rightarrow VT=VP\) (dpcm)

5 tháng 7 2021

làm mỏi tay khonng chị mà ít tick à =((

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

a1.

$\cot (2x+\frac{\pi}{3})=-\sqrt{3}=\cot \frac{-\pi}{6}$

$\Rightarrow 2x+\frac{\pi}{3}=\frac{-\pi}{6}+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{-\pi}{4}+\frac{k}{2}\pi$ với $k$ nguyên

a2. ĐKXĐ:...............

$\cot (3x-10^0)=\frac{1}{\cot 2x}=\tan 2x$

$\Leftrightarrow \cot (3x-\frac{\pi}{18})=\cot (\frac{\pi}{2}-2x)$

$\Rightarrow 3x-\frac{\pi}{18}=\frac{\pi}{2}-2x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{\pi}{9}+\frac{k}{5}\pi$ với $k$ nguyên.

 

 

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

a3. ĐKXĐ:........

$\cot (\frac{\pi}{4}-2x)-\tan x=0$

$\Leftrightarrow \cot (\frac{\pi}{4}-2x)=\tan x=\cot (\frac{\pi}{2}-x)$

$\Rightarrow \frac{\pi}{4}-2x=\frac{\pi}{2}-x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=-\frac{\pi}{4}+k\pi$ với $k$ nguyên.

a4. ĐKXĐ:.....

$\cot (\frac{\pi}{6}+3x)+\tan (x-\frac{\pi}{18})=0$

$\Leftrightarrow \cot (\frac{\pi}{6}+3x)=-\tan (x-\frac{\pi}{18})=\tan (\frac{\pi}{18}-x)$

$=\cot (x+\frac{4\pi}{9})$

$\Rightarrow \frac{\pi}{6}+3x=x+\frac{4\pi}{9}+k\pi$ với $k$ nguyên

$\Rightarrow x=\frac{5}{36}\pi + \frac{k}{2}\pi$ với $k$ nguyên. 

a: \(\Leftrightarrow cos2x=\dfrac{1}{\sqrt{2}}\)

=>2x=pi/4+k2pi hoặc 2x=-pi/4+k2pi

=>x=pi/8+kpi hoặc x=-pi/8+kpi

b: \(\Leftrightarrow sinx=sin\left(\dfrac{pi}{2}-3x\right)\)

=>x=pi/2-3x+k2pi hoặ x=pi/2+3x+k2pi

=>4x=pi/2+k2pi hoặc -2x=pi/2+k2pi

=>x=pi/8+kpi/2 hoặc x=-pi/4-kpi

d: \(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=-sin\left(3x+\dfrac{pi}{4}\right)\)

\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=sin\left(-3x-\dfrac{pi}{4}\right)\)

\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=cos\left(3x+\dfrac{3}{4}pi\right)\)

=>3x+3/4pi=x+pi/3+k2pi hoặc 3x+3/4pi=-x-pi/3+k2pi

=>2x=-5/12pi+k2pi hoặc 4x=-13/12pi+k2pi

=>x=-5/24pi+kpi hoặc x=-13/48pi+kpi/2

e: \(\Leftrightarrow sinx-\sqrt{3}\cdot cosx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=0\)

=>x-pi/3=kpi

=>x=kpi+pi/3

NV
1 tháng 10 2020

b.

\(\Leftrightarrow\frac{2\pi}{3}\left(sinx-1\right)=k2\pi\)

\(\Leftrightarrow sinx-1=3k\)

\(\Leftrightarrow sinx=3k+1\)

Do \(-1\le sinx\le1\)

\(\Rightarrow-1\le3k+1\le1\Rightarrow-\frac{2}{3}\le k\le0\)

\(\Rightarrow k=0\)

\(\Rightarrow sinx=1\)

\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

NV
1 tháng 10 2020

c.

ĐKXĐ: ...

\(\Leftrightarrow\frac{\pi}{4}\left(cosx-1\right)=-\frac{\pi}{4}+k\pi\)

\(\Leftrightarrow cosx-1=4k-1\)

\(\Leftrightarrow cosx=4k\)

\(-1\le cosx\le1\Rightarrow-1\le4k\le1\)

\(\Rightarrow-\frac{1}{4}\le k\le\frac{1}{4}\Rightarrow k=0\)

\(\Rightarrow cosx=0\)

\(\Rightarrow x=\frac{\pi}{2}+k\pi\)

NV
19 tháng 4 2021

Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý

Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)

19 tháng 4 2021

Mình sửa lại đề rồi á

16 tháng 7 2020

\(\text{1) Đ}K:\left\{{}\begin{matrix}sinx\ne0\\1-sinx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne m\pi\\x\ne\frac{\pi}{2}+n2\pi\end{matrix}\right.\)

\(2\text{) }ĐK:\left\{{}\begin{matrix}cos\left(2x+\frac{\pi}{3}\right)\ne0\\sinx\ne0\end{matrix}\right.\Leftrightarrow\\ \left\{{}\begin{matrix}2x+\frac{\pi}{3}\ne\frac{\pi}{2}+m\pi\\x\ne n\pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{12}+\frac{m\pi}{2}\\x\ne n\pi\end{matrix}\right.\)

\(3\text{) }ĐK:\left\{{}\begin{matrix}\frac{5-3cos2x}{1+sin\left(2x-\frac{\pi}{2}\right)}\ge0\\1+sin\left(2x-\frac{\pi}{2}\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5-3cos2x\ge0\\sin\left(2x-\frac{\pi}{2}\right)\ne-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}cos2x\le\frac{5}{3}\left(T/m\right)\\2x-\frac{\pi}{2}\ne\frac{3\pi}{2}+k2\pi\end{matrix}\right.\Leftrightarrow x\ne\pi+k\pi\)

\(4\text{) }ĐK:\left\{{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)\ne0\\cos\left(3x-\frac{\pi}{4}\right)\ne0\\tan\left(3x-\frac{\pi}{4}\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+\frac{\pi}{3}\ne a\pi\\3x-\frac{\pi}{4}\ne\frac{\pi}{2}+b\pi\\3x-\frac{\pi}{4}\ne c\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\frac{\pi}{3}+a\pi\\x\ne\frac{\pi}{4}+\frac{b\pi}{3}\\x\ne\frac{\pi}{12}+\frac{c\pi}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-\frac{\pi}{3}+a\pi\\x\ne\frac{\pi}{12}+\frac{k\pi}{6}\end{matrix}\right.\)

NV
3 tháng 10 2020

ĐKXĐ: ...

a.

\(tan^2\left(2x-\frac{\pi}{4}\right)=3\Leftrightarrow\left[{}\begin{matrix}tan\left(2x-\frac{\pi}{4}\right)=\sqrt{3}\\tan\left(2x-\frac{\pi}{4}\right)=-\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\frac{\pi}{4}=\frac{\pi}{3}+k\pi\\2x-\frac{\pi}{4}=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

b.

\(\Leftrightarrow tan^2x+cot^2x-2=0\)

\(\Leftrightarrow\left(tanx-cotx\right)^2=0\)

\(\Leftrightarrow tanx=cotx=tan\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow x=\frac{\pi}{2}-x+k\pi\)

\(\Leftrightarrow...\)

NV
4 tháng 9 2020

ĐKXĐ:

a/ \(cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

b/ \(sin\left(2x-7\pi\right)\ne0\Leftrightarrow sin2x\ne0\)

\(\Leftrightarrow2x\ne k\pi\Leftrightarrow x\ne\frac{k\pi}{2}\)

c/ \(sin\left(4x+5\pi\right).cos\left(2x-3\pi\right)\ne0\)

\(\Leftrightarrow sin4x.cos2x\ne0\)

\(\Leftrightarrow sin4x\ne0\) (vì \(sin4x=2sin2x.cos2x\) đã bao hàm luôn \(cos2x\) trong đó)

\(\Leftrightarrow4x\ne k\pi\Leftrightarrow x\ne\frac{k\pi}{4}\)