K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 9 2020

ĐKXĐ:

a/ \(cos2x\ne0\Leftrightarrow2x\ne\frac{\pi}{2}+k\pi\Leftrightarrow x\ne\frac{\pi}{4}+\frac{k\pi}{2}\)

b/ \(sin\left(2x-7\pi\right)\ne0\Leftrightarrow sin2x\ne0\)

\(\Leftrightarrow2x\ne k\pi\Leftrightarrow x\ne\frac{k\pi}{2}\)

c/ \(sin\left(4x+5\pi\right).cos\left(2x-3\pi\right)\ne0\)

\(\Leftrightarrow sin4x.cos2x\ne0\)

\(\Leftrightarrow sin4x\ne0\) (vì \(sin4x=2sin2x.cos2x\) đã bao hàm luôn \(cos2x\) trong đó)

\(\Leftrightarrow4x\ne k\pi\Leftrightarrow x\ne\frac{k\pi}{4}\)

loading...  loading...  

NV
15 tháng 7 2021

a.

\(\left\{{}\begin{matrix}sin\left(3x+\dfrac{\pi}{6}\right)\ne0\\cos2x\ne0\\sinx\ne-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\dfrac{\pi}{18}+\dfrac{k\pi}{3}\\x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\\x\ne-\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

b.

Do \(5+2cot^2x-sinx=4+2cot^2x+\left(1-sinx\right)>0\) nên hàm xác định khi:

\(\left\{{}\begin{matrix}sinx\ne0\\sin\left(x+\dfrac{\pi}{2}\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}sinx\ne0\\cosx\ne0\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\)

\(\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

NV
6 tháng 6 2021

1.

ĐKXĐ: \(\left\{{}\begin{matrix}cosx\ne0\\tanx-sinx\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\\dfrac{sinx}{cosx}-sinx\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cosx\ne0\\sinx\ne0\\cosx\ne1\end{matrix}\right.\) \(\Leftrightarrow sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

2.

ĐKXĐ: \(sin2x\ne0\Leftrightarrow x\ne\dfrac{k\pi}{2}\)

3. 

ĐKXĐ: \(\left\{{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)\ne0\\cos\left(x-\dfrac{\pi}{4}\right)\ne0\end{matrix}\right.\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{2}\right)\ne0\Leftrightarrow cos2x\ne0\)

\(\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

6 tháng 6 2021

cho hỏi cái này tí nha    \(sin\alpha\)=1/2  và \(cos\alpha\)=\(\dfrac{-\sqrt{3}}{2}\)

thì góc đó là \(\alpha=?\pi\)

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

a1.

$\cot (2x+\frac{\pi}{3})=-\sqrt{3}=\cot \frac{-\pi}{6}$

$\Rightarrow 2x+\frac{\pi}{3}=\frac{-\pi}{6}+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{-\pi}{4}+\frac{k}{2}\pi$ với $k$ nguyên

a2. ĐKXĐ:...............

$\cot (3x-10^0)=\frac{1}{\cot 2x}=\tan 2x$

$\Leftrightarrow \cot (3x-\frac{\pi}{18})=\cot (\frac{\pi}{2}-2x)$

$\Rightarrow 3x-\frac{\pi}{18}=\frac{\pi}{2}-2x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{\pi}{9}+\frac{k}{5}\pi$ với $k$ nguyên.

 

 

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

a3. ĐKXĐ:........

$\cot (\frac{\pi}{4}-2x)-\tan x=0$

$\Leftrightarrow \cot (\frac{\pi}{4}-2x)=\tan x=\cot (\frac{\pi}{2}-x)$

$\Rightarrow \frac{\pi}{4}-2x=\frac{\pi}{2}-x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=-\frac{\pi}{4}+k\pi$ với $k$ nguyên.

a4. ĐKXĐ:.....

$\cot (\frac{\pi}{6}+3x)+\tan (x-\frac{\pi}{18})=0$

$\Leftrightarrow \cot (\frac{\pi}{6}+3x)=-\tan (x-\frac{\pi}{18})=\tan (\frac{\pi}{18}-x)$

$=\cot (x+\frac{4\pi}{9})$

$\Rightarrow \frac{\pi}{6}+3x=x+\frac{4\pi}{9}+k\pi$ với $k$ nguyên

$\Rightarrow x=\frac{5}{36}\pi + \frac{k}{2}\pi$ với $k$ nguyên. 

23 tháng 6 2021

a, Ta có : \(\sin\left(3x+60\right)=\dfrac{1}{2}\)

\(\Rightarrow3x+60=30+2k180\)

\(\Rightarrow3x=2k180-30\)

\(\Leftrightarrow x=120k-10\)

Vậy ...

b, Ta có : \(\cos\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow2x-\dfrac{\pi}{3}=\dfrac{3}{4}\pi+k2\pi\)

\(\Leftrightarrow x=\dfrac{13}{24}\pi+k\pi\)

Vậy ...

c, Ta có : \(tan\left(x+\dfrac{\pi}{6}\right)=\sqrt{3}\)

\(\Rightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)

Vậy ...

d, Ta có : \(\cot\left(2x+\pi\right)=-1\)

\(\Rightarrow2x+\pi=\dfrac{3}{4}\pi+k\pi\)

\(\Leftrightarrow x=-\dfrac{1}{8}\pi+\dfrac{k}{2}\pi\)

Vậy ...

 

23 tháng 6 2021

a) \(sin\left(3x+60^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(3x+\dfrac{\pi}{3}\right)=sin\dfrac{\pi}{6}\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{\pi}{3}=\dfrac{\pi}{6}+k2\pi\\3x+\dfrac{\pi}{3}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{18}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\end{matrix}\right.\)(\(k\in Z\))

Vậy...

b) Pt\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\dfrac{3\pi}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{3\pi}{4}+k2\pi\\2x-\dfrac{\pi}{3}=-\dfrac{3\pi}{4}+k2\pi\end{matrix}\right.\)(\(k\in Z\))\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13\pi}{24}+k\pi\\x=-\dfrac{5\pi}{24}+k\pi\end{matrix}\right.\)(\(k\in Z\))

Vậy...

c) Pt \(\Leftrightarrow tan\left(x+\dfrac{\pi}{6}\right)=tan\dfrac{\pi}{3}\)

\(\Leftrightarrow x+\dfrac{\pi}{6}=\dfrac{\pi}{3}+k\pi,k\in Z\)\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi,k\in Z\)

Vậy...

d) Pt \(\Leftrightarrow tan\left(2x+\pi\right)=-1\)

\(\Leftrightarrow2x+\pi=-\dfrac{\pi}{4}+k\pi,k\in Z\)

\(\Leftrightarrow x=-\dfrac{5\pi}{8}+\dfrac{k\pi}{2},k\in Z\)

Vậy...

a: \(sinx=sin\left(\dfrac{\Omega}{4}\right)\)

=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{4}+k2\Omega\\x=\Omega-\dfrac{\Omega}{4}+k2\Omega=\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\)

b: cos2x=cosx

=>\(\left[{}\begin{matrix}2x=x+k2\Omega\\2x=-x+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k2\Omega\\3x=k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=k2\Omega\\x=\dfrac{k2\Omega}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{k2\Omega}{3}\)

c:

ĐKXĐ: \(x-\dfrac{\Omega}{3}< >\dfrac{\Omega}{2}+k\Omega\)

=>\(x< >\dfrac{5}{6}\Omega+k\Omega\)

 \(tan\left(x-\dfrac{\Omega}{3}\right)=\sqrt{3}\)

=>\(x-\dfrac{\Omega}{3}=\dfrac{\Omega}{3}+k\Omega\)

=>\(x=\dfrac{2}{3}\Omega+k\Omega\)

d:

ĐKXĐ: \(2x+\dfrac{\Omega}{6}< >k\Omega\)

=>\(2x< >-\dfrac{\Omega}{6}+k\Omega\)

=>\(x< >-\dfrac{1}{12}\Omega+\dfrac{k\Omega}{2}\)

 \(cot\left(2x+\dfrac{\Omega}{6}\right)=cot\left(\dfrac{\Omega}{4}\right)\)

=>\(2x+\dfrac{\Omega}{6}=\dfrac{\Omega}{4}+k\Omega\)

=>\(2x=\dfrac{1}{12}\Omega+k\Omega\)

=>\(x=\dfrac{1}{24}\Omega+\dfrac{k\Omega}{2}\)