Tìm 2 số biết tổng bằng 192 . ước chung lớn nhất của chúng là 24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra,gọi 2 số mà 24*m và 24*n (m;nEN và nguyên tố cùng nhau).
Ta có:
24*m+24*n=192.
=>24*(m+n)=192
=>m+n=192:24=8.
Mà m;nEN và nguyên tố cùng nhau.
=>m=7 thì n =1 ;m= 5 thì n=3 ;m=3 thì n=3 và m=1 thì n=7.
Rồi thử ngược vào tìm ra 2 số cần tìm.
Giả sử a,b\(\in\)N với a + b = 192 và ƯCLN (a,b) = 24
Suy ra : \(a+b=24\cdot\frac{a}{24}+24\cdot\frac{b}{24}=180\)
Đặt \(a_1=\frac{a}{24},b_1=\frac{b}{24}\)thì :
\(a_1+b_1=192\div24=8\)với \(a_1\)và \(b_1\)nguyên tố cùng nhau .
Các cặp số nguyên tố cùng nhau có tổng bằng 8 chỉ có thể là 1 và 7 hay 5 và 3
Suy ra : a = 1 , b = 7 hoặc a = 5 , b = 3
Vậy ...
Gọi 2 số cần tìm là a và b ta có:
UCLN(a,b) = 20
< = > a chia hết cho 20 ; b chia hết cho 20
< = > a + b chia hết cho 20
Mà 192 không chia hết cho 20
Nên không tồn tại 2 số cần tìm
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a + b = 66 (1)
GCD(a, b) = 6 (2)
Ta cần tìm hai số tự nhiên a và b sao cho có một số chia hết cho 5. Điều này có nghĩa là một trong hai số a và b phải chia hết cho 5.
Giả sử a chia hết cho 5, ta có thể viết lại a và b dưới dạng:
a = 5m
b = 6n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
5m + 6n = 66
Để tìm các giá trị của m và n, ta có thể thử từng giá trị của m và tính giá trị tương ứng của n.
Thử m = 1, ta có:
5 + 6n = 66
6n = 61
n ≈ 10.17
Vì n không là số tự nhiên, nên m = 1 không thỏa mãn.
Thử m = 2, ta có:
10 + 6n = 66
6n = 56
n ≈ 9.33
Vì n không là số tự nhiên, nên m = 2 không thỏa mãn.
Thử m = 3, ta có:
15 + 6n = 66
6n = 51
n ≈ 8.5
Vì n không là số tự nhiên, nên m = 3 không thỏa mãn.
Thử m = 4, ta có:
20 + 6n = 66
6n = 46
n ≈ 7.67
Vì n không là số tự nhiên, nên m = 4 không thỏa mãn.
Thử m = 5, ta có:
25 + 6n = 66
6n = 41
n ≈ 6.83
Vì n không là số tự nhiên, nên m = 5 không thỏa mãn.
Thử m = 6, ta có:
30 + 6n = 66
6n = 36
n = 6
Với m = 6 và n = 6, ta có:
a = 5m = 5 * 6 = 30
b = 6n = 6 * 6 = 36
Vậy, hai số tự nhiên cần tìm là 30 và 36.
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a - b = 84 (1)
UCLN(a, b) = 12 (2)
Ta có thể viết lại a và b dưới dạng:
a = 12m
b = 12n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
12m - 12n = 84
Chia cả hai vế của phương trình cho 12, ta có:
m - n = 7 (3)
Từ (2) và (3), ta có hệ phương trình:
m - n = 7
m + n = 12
Giải hệ phương trình này, ta có:
m = 9
n = 3
Thay m và n vào a và b, ta có:
a = 12m = 12 * 9 = 108
b = 12n = 12 * 3 = 36
Vậy, hai số tự nhiên cần tìm là 108 và 36.
1) \(a+b=66;UCLN\left(a;b\right)=6\)
\(\Rightarrow6x+6y=66\Rightarrow6\left(x+y\right)=66\Rightarrow x+y=11\)
mà có 1 số chia hết cho 5
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.5=30\\b=6.6=36\end{matrix}\right.\)
Vậy 2 số đó là 30 và 36 thỏa đề bài
2) \(a-b=66;UCLN\left(a;b\right)=12\left(a>b\right)\)
\(\Rightarrow12x-12y=84\Rightarrow12\left(x-y\right)=84\Rightarrow x-y=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12.3=36\\y=12.4=48\end{matrix}\right.\)
Vậy 2 số đó là 48 và 36 thỏa đề bài
Gọi 2 số đó là x và y
Theo đề bài ta có: x+y=288 và (x,y)=24
Như vậy ta có x và y cùng chia hết cho 24. Đặt x=24a;y=24b. Khi a,b nguyên tố cùng nhau hay (a,b)=1
Thay vào ta được a+b=12, kết hợp với (a,b)=1. Ta suy ra các cặp (a,b) thỏa mãn là: (1,11),(11,1),(5,7),(7,5)
Từ đó ta suy ra các cặp (x,y) là: (24,264),(264,24),(120,168),(168,120).
Đó là số 66 và 18
vì
- 66 chia hết cho 6
- 18 cũng chia hết cho 6
- ước chung lớn nhất của 66 và 18 là 6
- mà 66+18=84
=> hai số tự nhiên cần tìm là 66 và 18