K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2019

a) Để \(a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)

b) Để \(a\left(a+2\right)< \left(a+1\right)^2\)

\(\Leftrightarrow a^2+2a< a^2+2a+1\)

\(\Leftrightarrow a^2+2a-a^2-2a< a^2+2a+1-a^2-2a\)

\(\Leftrightarrow0< 1\left(đpcm\right)\)

c) Cách 1 : Để \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{b+a}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\left(đpcm\right)\)

Cách 2 : Vì a > 0, b > 0

Áp dụng bất đẳng thức Cô-si dạng phân thức ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\left(đpcm\right)\)

26 tháng 9 2018

chữ " b" mk ghi ở phần b) trước "CMR " là gõ nhầm đấy, ko liên quan j đến bài toán đâu !!

ấn vào ô báo cáo

25 tháng 2 2022

Tối quá, ko thấy bài đâu 

HT

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)

27 tháng 4 2018

a)\(A=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(A=1+\dfrac{a}{b}+\dfrac{b}{a}+1\)

Ta chứng minh bđt:\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\)(1)

\(\Leftrightarrow\dfrac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Áp dụng\(\Rightarrow A\ge1+2+1=4\left(\text{đ}pcm\right)\)

b)\(B=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)

\(B=\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\)

\(B=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\)

Áp dụng bđt (1)\(\Rightarrow B\ge2+2+2=6\left(\text{đ}pcm\right)\)