Tìm m để hệ phương trình:
{2x - 3y = 2 - m
{x + 2y = 3m + 1
có nghiệm (x;y) thỏa mãn x^2 + y^2 = 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(HPT\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m+6\\x+2y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x=7m+7\\x+2y=3m+1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=m+1\\m+1+2y=3m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=m\end{matrix}\right.\)
\(x^2+y^2=5\Leftrightarrow m^2+2m+1+m^2=5\\ \Leftrightarrow2m^2+2m-4=0\\ \Leftrightarrow m^2+m-2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
4:
x+3y=4m+4 và 2x+y=3m+3
=>2x+6y=8m+8 và 2x+y=3m+3
=>5y=5m+5 và x+3y=4m+4
=>y=m+1 và x=4m+4-3m-3=m+1
x+y=4
=>m+1+m+1=4
=>2m+2=4
=>2m=2
=>m=1
3:
x+2y=3m+2 và 2x+y=3m+2
=>2x+4y=6m+4 và 2x+y=3m+2
=>3y=3m+2 và x+2y=3m+2
=>y=m+2/3 và x=3m+2-2m-4/3=m+2/3
\(\left\{{}\begin{matrix}3x-y=5\\2x+my=3m-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}6x-2y=10\\6x+3my=9m-12\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3my+2y=9m-22\\6x-2y=10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y\left(3m+2\right)=9m-22\\6x-2y=10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=\dfrac{9m-22}{3m+2}\\6x-2.\dfrac{9m-22}{3m+2}=10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=3-\dfrac{28}{3m+2}\\6x-\dfrac{18m-44}{3m+2}=10\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=3-\dfrac{28}{3m+2}\\6x-6+\dfrac{56}{3m+2}=10\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=3-\dfrac{28}{3m+2}\\6x+\dfrac{56}{3m+2}=16\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=3-\dfrac{28}{3m+2}\\6x=16-\dfrac{56}{3m+2}=\dfrac{48m-24}{3m+2}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=3-\dfrac{28}{3m+2}\\x=\dfrac{8m-4}{3m+2}\end{matrix}\right.\)
2x + 3y = 7
\(\Rightarrow2.\dfrac{8m-4}{3m+2}+3.\left(3-\dfrac{28}{3m+2}\right)=7\)
\(\Rightarrow\dfrac{16m-8}{3m+2}+\dfrac{27m-66}{3m+2}=7\)
\(\Rightarrow\dfrac{16m-8+27m-66}{3m+2}=7\)
\(\Rightarrow\dfrac{43m-74}{3m+2}=7\)
=> 43m - 74 = 21m + 14
=> 43m - 74 - 21m - 14 = 0
=> 22m - 88 = 0
=> m = 4
1: Khi m=3 thì hệ phương trình (1) trở thành:
\(\left\{{}\begin{matrix}3x-2y=-1\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{13}\\y=\dfrac{5}{13}\end{matrix}\right.\)
2: Khi x=-1/2 và y=2/3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2\cdot\dfrac{-1}{2}+3\cdot\dfrac{2}{3}=1\\-\dfrac{1}{2}m-\dfrac{4}{3}=-1\end{matrix}\right.\Leftrightarrow m\cdot\dfrac{-1}{2}=\dfrac{1}{3}\)
hay m=-2/3
`a,x-3y=2`
`<=>x=3y+2` ta thế vào phương trình trên:
`2(3y+2)+my=-5`
`<=>6y+4+my=-5`
`<=>y(m+6)=-9`
HPT có nghiệm duy nhất:
`<=>m+6 ne 0<=>m ne -6`
HPT vô số nghiệm
`<=>m+6=0,-6=0` vô lý `=>x in {cancel0}`
HPT vô nghiệm
`<=>m+6=0,-6 ne 0<=>m ne -6`
b,HPT có nghiệm duy nhất
`<=>m ne -6`(câu a)
`=>y=-9/(m+6)`
`<=>x=3y+2`
`<=>x=(-27+2m+12)/(m+6)`
`<=>x=(-15+2m)/(m+6)`
`x+2y=1`
`<=>(2m-15)/(m+6)+(-18)/(m+6)=1`
`<=>(2m-33)/(m+6)=1`
`2m-33=m+6`
`<=>m=39(TM)`
Vậy `m=39` thì HPT có nghiệm duy nhất `x+2y=1`
b)Ta có: \(\left\{{}\begin{matrix}2x+my=-5\\x-3y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\2\left(2+3y\right)+my=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2+3y\\6y+my+4=-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y\left(m+6\right)=-9\end{matrix}\right.\)
Khi \(m\ne6\) thì \(y=-\dfrac{9}{m+6}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3y+2\\y=\dfrac{-9}{m+6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\cdot\dfrac{-9}{m+6}+2\\y=-\dfrac{9}{m+6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-27}{m+6}+\dfrac{2m+12}{m+6}=\dfrac{2m-15}{m+6}\\y=\dfrac{-9}{m+6}\end{matrix}\right.\)
Để hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1 thì \(\dfrac{2m-15}{m+6}+\dfrac{-18}{m+6}=1\)
\(\Leftrightarrow2m-33=m+6\)
\(\Leftrightarrow2m-m=6+33\)
hay m=39
Vậy: Khi m=39 thì hệ phương trình có nghiệm duy nhất thỏa mãn x+2y=1
\(HPT\Leftrightarrow\left\{{}\begin{matrix}2x-3y=2-m\\2x+4y=6m+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2y=3m+1\\7y=7m\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+2m=3m+1\\y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m+1\\y=m\end{matrix}\right.\\ x^2+y^2=10\Leftrightarrow m^2+2m+1+m^2=10\\ \Leftrightarrow2m^2+2m-9=0\\ \Delta=4+72=76\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{-2-2\sqrt{19}}{4}=\dfrac{-1-\sqrt{19}}{2}\\m=\dfrac{-2+2\sqrt{19}}{4}=\dfrac{-1+\sqrt{19}}{2}\end{matrix}\right.\)