K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 10 2021

ĐKXĐ: \(x\ge-1\)

\(5\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=2\left(x^2+2\right)\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{x^2-x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow a^2+b^2=x^2+2\)

Phương trình trở thành:

\(5ab=2\left(a^2+b^2\right)\)

\(\Leftrightarrow2a^2-5ab+2b^2=0\)

\(\Leftrightarrow\left(2a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2a=b\\a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=2\sqrt{x^2-x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x+1\right)=x^2-x+1\\x+1=4\left(x^2-x+1\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

20 tháng 9 2023

loading...

chúc bạn học tốt

24 tháng 9 2023

cảm ơn!

9 tháng 4 2023

a: Khi m = -4 thì:

\(x^2-5x+\left(-4\right)-2=0\)

\(\Leftrightarrow x^2-5x-6=0\)

\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)

Pt có 2 nghiệm phân biệt:

\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)

9 tháng 4 2023

Anh làm câu b nữa ạ, sửa câu b \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\)

25 tháng 12 2017

ĐKXĐ: \(x\ge2\)
Đặt \(\sqrt{x+1}=a\)\(\sqrt{x-2}=b\) 
Ta có hpt:
\(\hept{\begin{cases}\left(a-b\right)\left(1+ab\right)=3\\a^2-b^2=3\end{cases}}\)\(\Rightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\)

                                                           \(\Rightarrow a+b=1+ab\)(Do a-b không thể bằng 0)
                                                          \(\Leftrightarrow\left(a-1\right)-b\left(a-1\right)=0\)
                                                          \(\Leftrightarrow\left(a-1\right)\left(1-b\right)=0\) 
                                                           \(\Leftrightarrow\orbr{\begin{cases}a=1\\b=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(ktmđkxđ\right)\\x=3\left(tmđkxđ\right)\end{cases}}}\Rightarrow x=3\)
Vậy nghiệm của pt trên là x=3


 

24 tháng 6 2023

\(\left(2-\sqrt{5}\right)x^2+\left(6-\sqrt{5}\right)x-8+2\sqrt{5}=0\)

\(\Leftrightarrow\left(2-\sqrt{5}\right)x^2-\left(2-\sqrt{5}\right)x+\left(8-2\sqrt{5}\right)x-(8-2\sqrt{5})=0\)

\(\Leftrightarrow\left(2-\sqrt{5}\right)x\left(x-1\right)+\left(8-2\sqrt{5}\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[\left(2-\sqrt{5}\right)x+\left(8-2\sqrt{5}\right)\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\\left(2-\sqrt{5}\right)x=-8+2\sqrt{5}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-8+2\sqrt{5}}{2-\sqrt{5}}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=6+4\sqrt{5}\end{matrix}\right.\)

Vậy \(S=\left\{1;6+4\sqrt{5}\right\}\)

21 tháng 10 2018

đơn giản như đan rổ

21 tháng 10 2018

1. đk: pt luôn xác định với mọi x

\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)

\(\Leftrightarrow\left|x-1\right|-\left|x-3\right|=10\)

Bạn mở dấu giá trị tuyệt đối như lớp 7 là ok rồi!

2.  đk: \(x\geq 1\)

\(\sqrt{x+2\sqrt{x-1}}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=3\sqrt{x-1}-5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}-3\sqrt{x-1}+5=0\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|-3\sqrt{x-1}+5=0\)

Đến đây thì ổn rồi! bạn cứ xét khoảng rồi mở trị và bình phương 1 chút là ok cái bài!

NV
10 tháng 9 2021

a. ĐKXĐ \(x\ge2\)

\(\sqrt{x+3}-3+\sqrt{x-2}-2=0\)

\(\Leftrightarrow\dfrac{x-6}{\sqrt{x+3}+3}+\dfrac{x-6}{\sqrt{x-2}+2}=0\)

\(\Leftrightarrow\left(x-6\right)\left(\dfrac{1}{\sqrt{x+3}+3}+\dfrac{1}{\sqrt{x-2}+2}\right)=0\)

\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\x^2-x-1=\left(1-x\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^2-x-1=x^2-2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x=2\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow\) Pt vô nghiệm 

10 tháng 9 2021

\(a.\sqrt{x+3}=5-\sqrt{x-2}\)

\(\sqrt{x+3}+\sqrt{x-2}=5\)

\(\sqrt{\left(x+3\right)^2}+\sqrt{\left(x-2\right)^2}=5^2\)

\(x+3+x-2=25\)

\(2x+1=25\)

\(x=12\)

\(b.\sqrt{x^2-x-1}=1-x\)

\(\sqrt{\left(x^2-x-1\right)^2}=\left(1-x\right)^2\)

\(x^2-x-1=1-2x+x^2\)

\(x^2-x-1-1+2x-x^2=0\)

\(x-2=0\)

\(x=2\)