Cho sáu số tự nhiên khác nhau có tổng bằng 50. Chứng minh rằng trong sáu số đó tồn tại ba số có tổng lớn hơn hoặc bằng 30.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 6 số đã cho là a, b, c, d, e, g. Giả sử : a > b > c > d > e > g.
Nếu c lớn hơn/ bằng 9 thì b lớn hơn/ bằng 10; c lớn hơn/ bằng 11. Suy ra : a + b + c lớn hơn/ bằng 9 + 10 + 11 = 30.
Nếu c nhỏ hơn/ bằng 8 thì d nhỏ hơn/ bằng 7; e nhỏ hơn/ bằng 6; g nhỏ hơn/ bằng 5.
Suy ra : d + e + g nhỏ hơn/ bằng 7 + 6 + 5 = 18 => a + b + c lớn hơn/ bằng 30.
Gọi 6 số đó là a1 < a2 < a3 < a4 < a5 < a6.
Giả sử không có 3 số nào có tổng lớn hơn hoặc bằng 30 thì ta có a4 + a5 + a6< 30
Nếu a4 >= 9 thì a5 >= 10, a6 >= 11 dẫn đến a4 + a5 + a6 >=30 (mâu thuẫn)
Vậy a4 <=8 , do đó a3 <= 7, a2 <= 6, a1 <= 5
Khi đó a1 + a2 + a3 + a4 + a5 + a6 < 5 + 6 + 7 + 30 = 48 < 50 (mâu thuẫn)
Vậy giả sử sai dẫn đến tồn tại 3 số có tổng lớn hơn hoặc bằng 30
Gọi sáu số đã cho là a, b, c, d, e, g, giả sử rằng a > b > c > d > e > g.
Nếu \(c\ge9\) thì \(b\ge10,a\ge11\) , do đó \(a+b+c\ge11+10+9=30\).
Nếu \(c\le8\) thì \(d\le7,e\le6,g\le5\), do đó \(d+e+g\le7+6+5=18\), suy ra \(a+b+c\ge32\) .
Gọi sáu số đã cho là a, b, c, d, e, g, giả sử rằng a > b > c > d > e > g.
Nếu c≥9 thì b≥10,a≥11 , do đó a+b+c≥11+10+9=30.
Nếu c≤8 thì d≤7,e≤6,g≤5, do đó d+e+g≤7+6+5=18, suy ra a+b+c≥32 .