Chứng minh rằng với mọi x thì /x-2018/+/x-2019/>= 1
Giúp mình nhanh nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2x+2y/x+y=2
=> 2(x+y)/x+y=2
=>2/1=2
=> đpcm
Câu b thì mình nghĩ nó không thể bằng được đâu bạn
A = | x - 2015 | +| x - 2016 |
A = | x - 2015 | + | 2016 - x |
A = | x - 2015 | + | 2016 - x | \(\ge\)| x - 2015 + 2016 - x |
A = | x - 2015 | + | 2016 - x | \(\ge\)1
Dấu = xảy ra\(\Leftrightarrow\)x - 2015 = 0 ; 2016 - x = 0
\(\Rightarrow\)x = 2015 hoặc x = 2016
Min A = 1 \(\Leftrightarrow\)x = 2015 hoặc x = 2016
ĐKXĐ: x ≥ 0
Do -2 < 2
⇒ √x - 2 < √x + 2
⇒ (√x - 2)/(√x + 2) < 1
Vậy A < 1
\(A=\dfrac{\sqrt{x}-2}{\sqrt{x}+2}=\dfrac{\sqrt{x}+2-4}{\sqrt{x}+2}=1-\dfrac{4}{\sqrt{x}+2}\left(dkxd:x\ge0\right)\)
Ta thấy: \(\sqrt{x}+2>0\forall x\ge0\)
\(\Rightarrow\dfrac{4}{\sqrt{x}+2}>0\forall x\ge0\)
\(\Rightarrow-\dfrac{4}{\sqrt{x}+2}< 0\forall x\ge0\)
\(\Rightarrow A=1-\dfrac{4}{\sqrt{x}+2}< 1\forall x\ge0\left(dpcm\right)\)
\(\left|y-2018\right|=2018-y\)
\(\left|y-2018\right|\ge0\Rightarrow2018-y\ge0\Rightarrow y\le2018\)
\(\Leftrightarrow\orbr{\begin{cases}y-2018=2018-y\\-y+2018=2018-y\end{cases}}\Leftrightarrow\orbr{\begin{cases}2y=2.2018\\0=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2018\left(TMĐK\right)\\y\le2018\end{cases}}}\)
cái đề bị làm sao ko bn(hay boul :D) ??? x,y thuộc N chứ ????? ( y bé hơn hoặc bằng 2018)
coi nha: \(y=-5\Rightarrow2018-\left(-5\right)=2023=2^x+2019\Rightarrow2^x=4\Rightarrow x=2\)
\(y=-9\Rightarrow2018-y=2018-\left(-9\right)=2027\Rightarrow2^x=8\Rightarrow x=3\)
\(y=-17\Rightarrow2018-\left(-17\right)=2035=2^x+2019\Rightarrow2^x=16\Rightarrow x=4\)
xét đến mai ????
còn nếu x,y thuộc N:
\(y\le2018\left(\text{lúc nãy chứng minh rồi}\right)\Rightarrow0\le y\le2018\left(\text{vì y thuộc N}\right)\Rightarrow2018-y\le2018\)
\(2^x+2019\ge2020\)=> ko có g/trị x và y nào đồng thời t/m \(2^x+2019=\left|y-2018\right|=2018-y\)
p/s: có gì sai bỏ qua :)