tìm tất cả các số nguyên x thỏa mãn x^3 + 8 = \(7\sqrt{8x+1}\)
2 cách nha ! cảm ơn !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
\(x^2+x+13=y^2\\ \Leftrightarrow x^2-y^2+x+13=0\\ \Leftrightarrow4x^2-4y^2+4x+52=0\\ \Leftrightarrow\left(2x+1\right)^2-4y^2=51\\ \Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=51=51\cdot1=17\cdot3\left(x,y>0\right)\)
Tới đây giải ra các trường hợp thui
a) => 2xy +3x=y+1
=> 2xy+3x-y=1
=> x(2y+3) - 1/2 (2y+3) +3/2 =1
=> (x-1/2)(2y+3)=1-3/2= -1/2
=> (2x-1)(2y+3)=-1
ta có bảng
...........
\(\left(x^2+1\right)^2y^2+16x^2+\sqrt{x^2-2x-y^3+9}=8x^3y+8xy\)(*)
Ta có (*) <=> \(\left[\left(x^2+1\right)y-4x\right]^2+\sqrt{x^2-2x-y^2+9}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2+1\right)y-4x=0\\x^2-2x-y^3+9=0\end{cases}\Leftrightarrow\hept{\begin{cases}yx^2-4x+y=0\left(1\right)\\x^2-2x-y^3+9=0\left(2\right)\end{cases}}}\)
Nếu y=0 thì từ (1) => x=0, thay vào (2) không thỏa mãn
Nếu y\(\ne\)0 ta coi (1) và (2) là phương trình bậc hai ẩn x
Điều kiện để có nguyên x là: \(\hept{\begin{cases}\Delta_1=4-y^2\ge0\\\Delta_2=y^3-8\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}-2\le y\le2\\y\ge2\end{cases}\Leftrightarrow}y=2}\)
Thay y=2 vào hệ (1), (2) ta được \(\hept{\begin{cases}2x^2-4x+2=0\\x^2-2x+1=0\end{cases}\Leftrightarrow x=1}\)
Vậy x=1; y=2
Điều kiện \(8x+1\ge0\Leftrightarrow8x\ge-1\Leftrightarrow x\ge-\frac{1}{8}\)
Cách 1: Do \(x\in Z\)nên \(x\ge0\).Ta có:
\(x^3+8=7\sqrt{8x+1}\Leftrightarrow\left(x^3+8^2\right)=(7\sqrt{8x+1})^2\)
\(\Leftrightarrow x^6+16x^3+64=49\left(8x+1\right)\Leftrightarrow x^6+16x^3+392x+15=0\)
\(\Leftrightarrow x^6-3x^5+3x^5-9x^4+9x^4-27x^3+43x^3-129x^2+129x^2-387x-5x+15=0\)
\(\Leftrightarrow x^5\left(x-3\right)+3x^4\left(x-3\right)+9x^3\left(x-3\right)+43x^2\left(x-3\right)+129x\left(x-3\right)-5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^5+3x^4+9x^3+43x^2+129x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x^5+3x^4+9x^3+43x^2+129x-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^5+3x^4+9x^3+43x^2+129x-5=0\left(\cdot\right)\end{cases}}\)
\(x=0\)là nghiệm của \(\left(\cdot\right)\)vì \(-5\ne0\)
\(x\ne0,\)ta có \(x\ge0\)và \(x\in Z\)nên \(x\ge1\)
Do đó \(x^5+3x^4+9x^3+43x^2+129x>5\)
\(\Rightarrow\left(\cdot\right)\)vô nghiện nguyên khác 0
Vậyphương trình chỉ có 1 nghiệm nguyên là \(x=3\)
Cách 2: \(x\ge0;x\in Z\)
Với \(x=0;1;2;4\)đẳng thức ko thỏa mãn
Với \(x=3\)đẳng thức thỏa mãn
Với \(x\ge5\)ta có :
\(7\sqrt{8x+1}>7\sqrt{8x+1}=21\sqrt{x}< 21x< x^2.x=x^3< x^3+8\)
Vậy phương trình chỉ có 1 nghiệm là \(x=3\)