Tìm các số a, b, c khác 0 thoả mãn:
\(\frac{a+b-2}{c}=\frac{b+c+1}{a}=\frac{c+a+1}{b}=\frac{a+b+c}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}\)
( ta lần lược lấy - (1) + (2) + (3) = (1) - (2) + (3) = (1) + (2) - (3) được)
\(=\frac{2bc}{5}=\frac{2ca}{3}=\frac{2ab}{1}\)
Ta thấy rằng a,b,c không thể = 0 vì như vậy thì a + b + c \(\ne69\)
\(\Rightarrow\hept{\begin{cases}a=\frac{c}{5}\\b=\frac{c}{3}\end{cases}}\)
Thế vào: a + b + c = 69
\(\Leftrightarrow\frac{c}{5}+\frac{c}{3}+c=69\)
\(\Rightarrow c=45\)
\(\Rightarrow\hept{\begin{cases}a=9\\b=15\end{cases}}\)
Em thử nha, có gì sai bỏ qua ạ.
Đề cho gọn,Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì \(xy+yz+zx=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}=0\)
Và \(x+y+z=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}=0\)
Ta có: \(VT=\sqrt{x^2+y^2+z^2}=\sqrt{\left(x+y+z\right)^2-2\left(xy+yz+zx\right)}=0\) (1)
Mặt khác,ta có \(VT=\left|x+y+z\right|=0\) (2)
Từ (1) và (2) ta có đpcm
Dòng cuối phải là
VP=|x+y+z|=0
đúng không????
Câu hỏi của Chu Hoàng THủy Tiên - Toán lớp 7 - Học toán với OnlineMath
Xét : \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{2}{abc}.\left(a+b+c\right)=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)(Vì a + b + c = 0)
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\) (đpcm)
+ TH1 : \(a+b+c=0\Rightarrow\frac{a+b+c}{2}=0\)
\(\Rightarrow\hept{\begin{cases}a+b-2=0\\b+c+1=0\\c+a+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}a+b+c=c+2=0\\a+b+c=a-1=0\\a+b+c=b-1=0\end{cases}}\)\
\(\Rightarrow\hept{\begin{cases}a=1\\b=1\\c=-2\end{cases}}\left(TM\right)\)
+ TH2 : \(a+b+c\ne0\)
\(\frac{a+b-2}{c}=\frac{b+c+1}{a}=\frac{c+a+1}{b}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\) ( Theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}a+b-2=2c\\b+c+1=2a\\c+a+1=2b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b+c=3c+2\\a+b+c=3a-1\\a+b+c=3b-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}3c+2=4\\3a-1=4\\3b-1=4\end{cases}}\) \(\left(do\frac{a+b+c}{2}=2\Rightarrow a+b+c=4\right)\)
\(\Rightarrow\hept{\begin{cases}a=b=\frac{5}{3}\\c=\frac{2}{3}\end{cases}\left(TM\right)}\)
Vậy \(\hept{\begin{cases}a=b=1\\c=-2\end{cases}}\) hoặc \(\hept{\begin{cases}a=b=\frac{5}{3}\\c=\frac{2}{3}\end{cases}}\)