K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

ai tick mik đến 210 mik tick cho cả đời

31 tháng 12 2015

@ Cao Phan Tuấn Anh: Mik viết câu hỏi là để hỏi chứ không phải làm cái diễn đàn cho bạn spam!

Bạn không làm được thì để các bạn khác làm làm!

Xét ΔABD có 

E là trung điểm của AB

G là trung điểm của BD

Do đó: EG là đường trung bình của ΔABD

Suy ra: EG//AD và EG=AD/2(1)

Xét ΔADC có

H là trung điểm của AC

F là trung điểm của CD

Do đó: HF là đường trung bình của ΔADC

Suy ra: HF//AD và HF=AD/2(2)

Từ (1) và (2) suy ra EG//HF và EG=HF

Xét ΔABC có

E là trung điểm của AB

H là trung điểm của AC

Do đó: EH là đường trung bình của ΔABC

Suy ra: EH=BC/2=AD/2(3)

Từ (1) và (3) suy ra EG=EH

Xét tứ giác EHFG có 

EG//HF

EG=HF

Do đó: EHFG là hình bình hành

mà EG=EH

nên EHFG là hình thoi

Ta có : Tứ giác MPNQ là hình bình hành

 MN và PQ cắt nhau tại trung điểm I của mỗi đường

Ta có : Tứ giác EPFQ là hình bình hành

 EF đi qua I

Vậy EF , MN và PQ đồng quy

10 tháng 3 2021

Cảm ơn bạn

 

14 tháng 9 2017

Bạn ơi có đáp án câu này không mình xin với. Mình cũng đang học

15 tháng 9 2017

Mk ko biết 

10 tháng 7 2020

Gọi M,N,P lần lượt là trung điểm các cạnh BF,AF,AB 

Áp dụng tính chất đường trung bình suy ra được:

K,N,M thẳng hàng (//BE)

J,P,M thẳng hàng (//FD)

I,P,N thẳng hàng (//CF)

Áp dụng định lý Menalaus vào ∆MNP với các điểm I,J,K lần lượt thuộc phần kéo dài của các cạnh PN,PM,MN cho thấy:Khi và chỉ khi KN/KM×JM/JP×IP/IN=1 (*) thì suy ra đpcm.

Thật vậy:

KN/KM=AE/EB (1)

JM/JP=FD/AD (2)

IP/IN=BC/FC (3) (cái này là do tính chất đường trung bình đó bạn. Khi bạn biến đổi KN và KM thì lần lượt ra (1/2)×AE và (1/2)×BE. Khi lập tỉ số KN/KM thì bạn gạch bỏ 1/2 là ra AE/BE. Chứng minh tương tự với các tỉ số kia. Mình nhớ có một tính chất nói về cái này mà mình quên tên nó rồi hic.)

Áp dụng định lý Menalaus vào ∆ABF với các điểm C,D,E lần lượt thuộc phần kéo dài của các cạnh BF,AF,AB:

AE/EB×FD/AD×BC/FC=1 (4)

Từ (1),(2),(3) và (4) ==> KN/KM×JM/JP×IP/IN=1.

==>I,J,K thẳng hàng (theo định lý Menalaus trong ∆MNP với các điểm I,J,K lần lượt thuộc phần kéo dài của các cạnh PN,PM,MN).

Vậy I,J,K thẳng hàng (đpcm).