a)Với a>0, chứng tỏ a+1/a≥2
b)Chứng tỏ \(x^2+y^2+2^2+3\)≥2(x+y+2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(A=x^2-4xy+4y^2+3\)
\(=\left(x^2-4xy+4y^2\right)+3\)
\(=\left(x-2y\right)^2+3\ge3>0\) với mọi x,y
Vậy A > 0 với mọi x,y
2)
\(B=2x-2x^2-1\)
\(=-2\left(x^2-x+\dfrac{1}{2}\right)\)
\(=-2\left[\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{4}\right)\right)-\dfrac{1}{4}+\dfrac{1}{2}\right]\)
\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right]\)
\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{2}\le-\dfrac{1}{2}< 0\) với mọi x,y
Vậy B < 0 với mọi x,y
a/
Do \(\left\{{}\begin{matrix}a>2\Rightarrow\frac{1}{a}< \frac{1}{2}\\b>2\Rightarrow\frac{1}{b}< \frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\frac{1}{a}+\frac{1}{b}< \frac{1}{2}+\frac{1}{2}=1\)
\(\Rightarrow\frac{a+b}{ab}< 1\Rightarrow a+b< ab\) (đpcm)
b/ Ko rõ đề là gì
c/ \(\frac{a^2+b^2}{2}\ge ab\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
a) x2-6x+10>0
<=>x2-6x+9+1>0
<=>(x-3)2+1>0(đúng với mọi x)
vậy x2-6x+10>0 với mọi x
b)x2-2x+y2+4y+6>0
<=>x2-2x+1y2+4y+4+1>0
<=>(x-1)2+(y+2)2+1>0 (với mọi x,y)
Vậy x2-2x+y2+4y+6>0 với mọi x,y
y=f(x)=5x2 -4
a) f(x) =5x2 -4 = 5(-x)2 -4 = f (-x) ; vì (-x)2 =x 2
b) x1<x2<0 => x1+x2<0 và x1 - x2 <0
f(x1) - f(x2) = (5x12- 4 )- (5x22 -4) = 5(x1-x2)(x1+x2) >0 ( theo trên)
=> f(x1) > f(x2)
a, \(A=x^2-4xy+4y^2+1\)
\(\Leftrightarrow A=\left(x^2-4xy+4y^2\right)+1\)
\(\Leftrightarrow A=\left(x-2y\right)^2+1\)
Mà \(\left(x-2y\right)^2\ge0\forall x,y\)
\(\Rightarrow A>0\)
\(\Rightarrow A>0\)
b, Khi \(x-2y=4\)
\(\Rightarrow A=4^2+1\)
\(\Rightarrow A=17\)
ta có A=(x-2y)^2+1
mà (x-2y)^2 lớn hơn hoặc bằng 0
suy ra (x-2y)^2+1>o
vậy A lớn hơn 0 với mọi x,y
b)
NẾU X-2Y=4
SUY RA A= 4^2+1
=17
a) A=\(x^2-4xy+4y^2+1=\left(x^2-4xy+4y^2\right)+1=\left(x^2-2x2y+\left(2y\right)^2\right)+1=\left(x-2y\right)^2+1\)
Do \(\left(x-2y\right)^2\)>=0
=>\(\left(x-2y\right)^2\)+1>=1
=>\(\left(x-2y\right)^2\)+1>0
=>\(x^2-4xy+4y^2+1\)>0
Vậy A>0 với mọi x,y
b) Ta có A=\(x^2-4xy+4y^2+1=\left(x-2y\right)^2+1\)
Thay x-2y=4 vào biểu thức (x-2y)\(^2\) ta có:
4\(^2\)+1=16+1=17
Vậy giá trị của A tại x-2y=4 là 17
a.
\(A=x^2-4xy+4y^2+1\\ =\left(x^2-2.x.2y+\left(2y\right)^2\right)+1\\ =\left(x-2y\right)^2+1\ge1>0\)
b.
\(x-2y=4\\ \Rightarrow A=\left(x-2y\right)^2+1=16+1=17\)
Bài 1 :
a, \(A=x^2-4x+6=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=y^2-y+1=y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{3}{4}=\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi y = 1/2
Vậy GTNN B là 3/4 khi y = 1/2
c, \(C=x^2-4x+y^2-y+5=x^2-4x+4+y^2-y+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu ''='' xảy ra khi \(x=2;y=\frac{1}{2}\)
Vậy GTNN C là 3/4 khi x = 2 ; y = 1/2
Bài 3 :
a, \(x^2-6x+10=x^2-2.3.x+9+1=\left(x-3\right)^2+1\ge1>0\)( đpcm )
b, \(-y^2+4y-5=-\left(y^2-4y+5\right)=-\left(y^2-4y+4+1\right)=-\left(y-2\right)^2-1< 0\)( đpcm )
Bài 4 :
\(B=\left(x^2+y^2\right)=\left(x+y\right)^2-2xy\)
Thay (*) ta được : \(225-2\left(-100\right)=225+200=425\)
Bài 5 :
\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)\)
\(=2y.2x=4xy=VP\)( đpcm )
\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)
=>\(\dfrac{yz+2xz+3xy}{xyz}=0\)
=>yz+2xz+3xy=0
=>\(xy+\dfrac{2}{3}xz+\dfrac{1}{3}yz=0\)
\(x+\dfrac{y}{2}+\dfrac{z}{3}=1\)
=>\(\left(x+\dfrac{y}{2}+\dfrac{z}{3}\right)^2=1\)
=>\(x^2+\dfrac{y^2}{4}+\dfrac{z^2}{9}+2\left(x\cdot\dfrac{y}{2}+x\cdot\dfrac{z}{3}+\dfrac{y}{2}\cdot\dfrac{z}{3}\right)=1\)
=>\(A+2\left(\dfrac{xy}{2}+\dfrac{xz}{3}+\dfrac{yz}{6}\right)=1\)
=>A+xy+2/3xz+1/3yz=1
=>A=1