Cho hai đường tròn (O;R) và (O';R') cắt nhau tại A và B (O, O' thuốc hai nửa mặt phẳng bờ AB. Một đường thẳng qua A cắt đường tròn (O) và(O') tương ứng tại C và D ( A nằm giữa C và D). Các tiếp tuyến tại C và D của hai đường tròn cắt nhau tại K. Nối KB cắt CD tại I. Kẻ Ix song song với KD cắt BD tại E
a) CMR tam giác BOO' đồng dạng tam giác BCD (đã làm)
b) CM tứ giác BCKD nội tiếp (đã làm)
c) CM AE là tiếp tuyến của đường tròn (O;R)
Mình sẽ giải lại 2 câu a và b.
a) Vì (O) và (O') giao nhau tại A và B nên AB vuông góc OO'. Do đó ^BO'O = 1/2.^AO'B = ^BDA
Tương tự ^BOO' = ^BCA. Từ đó \(\Delta\)BOO' ~ \(\Delta\)BCD (g.g) (đpcm).
b) Ta thấy: ^KDA = ^ABD (=1/2.Sđ(AD nhỏ của (O')). Tương tự ^KCA= ^ABC
Nên ta có: ^KCB + ^KDB = ^BCD + ^BDC + ^KDA + ^KCA = ^BDC + ^BCD + ^ABD + ^ABC = 1800
Suy ra tứ giác BCKD nội tiếp (đpcm).
c) Vì IE // DK nên ^DIE = ^KDA (So le trong) = ^ABD (cmt) => ^DIE = ^ABE => Tứ giác AIEB nội tiếp
=> ^BAE = ^BIE = ^BKD (Vì IE // KD) = ^BCD (Tứ giác BCKD nt) = 1/2.Sđ(AB nhỏ của (O)
Do vậy AE là tiếp tuyến của (O) (đpcm).
lop 9 kho qua, ve mot nui hinh, chang nhin ra dc hinh nao voi hinh nao