\(A=\frac{5x-2}{x-2}\)
Tìm x thuộc tập hợp số nguyên để A có giá trị nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{5x}{3}:\frac{10x^2+5x}{21}\)
Ta có:\(A=\frac{5x}{3}:\frac{10x^2+5x}{21}\)
\(A=\frac{5x}{3}.\frac{21}{5x\left(2x+1\right)}\)
\(A=\frac{7}{2x+1}\left(ĐKXĐ:x\ne\frac{1}{2}\right)\)
Để A nguyên thì 7 phải chia hết cho 2x+1
Hay \(\left(2x+1\right)\inƯ\left(7\right)\)
Vậy Ư(7) là:[1,-1,7,-7]
Do đó ta có bảng sau:
2x+1 | -7 | -1 | 1 | 7 |
2x | -8 | -2 | 0 | 6 |
x | -4 | -1 | 0 | 3 |
Vậy để A ngyên thì \(x\in\left[-4;-1;0;3\right]\)
Ta có : \(\frac{10x+6}{x+2}=\frac{10x+20-14}{x+2}=\frac{10\left(x+2\right)}{x+2}-\frac{14}{x+2}=10-\frac{14}{x+2}\)
Để phân số nguyên thì : 14 chia hết cho x + 2
=> x + 2 thuộc Ư(14)
cứ thế lập banngr là ra
Để \(\frac{5}{x+2}\) nguyên thì 5 chia hết cho x + 2
=> x + 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x + 2 | -5 | -1 | 1 | 5 |
x | -7 | -3 | -1 | 3 |
Đặt \(B=\frac{2\sqrt{x}+3}{\sqrt{x}-1}=\frac{2\sqrt{x}-2+5}{\sqrt{x}-1}=\frac{2\left(\sqrt{x}-1\right)+5}{\sqrt{x}-1}=2+\frac{5}{\sqrt{x}-1}\)
\(\Rightarrow B\in Z\Leftrightarrow2+\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow\frac{5}{\sqrt{x}-1}\in Z\Leftrightarrow5⋮\sqrt{x}-1\Leftrightarrow\sqrt{x}-1\inƯ\left(5\right)\)
\(\Rightarrow\sqrt{x}-1\in\left\{-5;-1;1;5\right\}\)
Vì x dương\(\Rightarrow\sqrt{x}-1\ge0\)
\(\Rightarrow\sqrt{x}-1\in\left\{1;5\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{2;6\right\}\)
\(\Rightarrow x\in\left\{4;36\right\}\)
Vậy số phần tử của tập hợp A là 2
\(\frac{x-1}{x+5}=\frac{6}{7}\Leftrightarrow\frac{x-1}{6}=\frac{x+5}{7}\)
\(\Leftrightarrow\frac{7\left(x-1\right)}{42}=\frac{6\left(x+5\right)}{42}\)
\(\Leftrightarrow7\left(x-1\right)=6\left(x+5\right)\)
\(\Leftrightarrow7x-7=6x+30\)
\(\Leftrightarrow7x-6x=7+30\)
\(\Leftrightarrow x=37\)
Vậy nghiệm của phương trình là x = 37
a)\(A=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\left(ĐK:x\ne0;-5\right)\)
\(\Leftrightarrow A=\frac{x^2}{5\left(x+5\right)}+\frac{2\left(x-5\right)}{x}+\frac{5\left(x+10\right)}{x\left(x+5\right)}\)
\(\Leftrightarrow A=\frac{x^3+10\left(x^2-25\right)+25x+250}{5x\left(x+5\right)}\)
\(\Leftrightarrow A=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)
\(\Leftrightarrow A=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}\)
\(\Leftrightarrow A=\frac{x+5}{5}\)
b)Để A=-4 \(\Leftrightarrow\frac{x+5}{5}=-4\)
\(\Leftrightarrow x+5=-20\)
\(\Leftrightarrow x=-25\)
a).....
\(=\frac{x^2}{5\left(x+5\right)}+\frac{2x-10}{x}+\frac{50+5x}{x\left(x+5\right)}\) MTC= 5x (x+5) ĐK\(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
\(=\frac{x^2.x}{5x\left(x+5\right)}+\frac{5.\left(2x-10\right).\left(x+5\right)}{5x\left(x+5\right)}+\frac{5.\left(50+5x\right)}{5x\left(x+5\right)}\)
\(=\frac{x^3+\left(10x-50\right).\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+50x-50x-250+250+25x}{5x\left(x+5\right)}\)
\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}\)
\(=\frac{x\left(x^2+10x+25\right)}{5x\left(x+5\right)}\)
\(=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)
b) A=-4
=>\(\frac{x+5}{5}=-4\)
=> x = -25
c)
d) Để A đạt gt nguyên thì 5\(⋮\)x+5
=> \(\left(x+5\right)\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
*x+5=1 => x=-4 \(\in Z\)
*x+5=-1 => x=-6\(\in Z\)
*x+5=5 => x=0\(\in Z\)
*x+5=-5 => x=-10\(\in Z\)
Vậy...........
2
\(\text{a) }\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+.....+\frac{1}{98.99.100}\right)x=-3\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{98.99}-\frac{1}{99.100}\right)x=-3\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)x=-3\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)x=-3\)
\(\Rightarrow\frac{1}{2}.\left(\frac{4950}{9900}-\frac{1}{9900}\right)x=-3\)
\(\Rightarrow\left(\frac{1}{2}.\frac{4949}{9900}\right).x=-3\)
\(\Rightarrow\frac{4949}{19800}x=-3\)
\(\Rightarrow x=\left(-3\right).\frac{19800}{4949}\)
\(\Rightarrow x=\frac{-59400}{4949}\)
P/s : ko chắc nha
\(A=\frac{5x-2}{x-2}=\frac{5\left(x-2\right)+10-2}{x-2}=\frac{5\left(x-2\right)}{x-2}+\frac{10-2}{x-2}=5+\frac{8}{x-2}\)
- Để A nguyên thì 8 phải chia hết cho x - 2
=>\(x-2\varepsilonƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
=> \(x\varepsilon\left\{-6;-2;0;1;3;4;6;10\right\}\)
Vậy:...
\(A=\frac{5x-2}{x-2}\)
\(=\frac{5x-10+8}{x-2}\)
\(=\frac{5\left(x-2\right)+8}{x-2}\)
\(=\frac{5\left(x-2\right)}{x-2}+\frac{8}{x-2}\)
\(=5+\frac{8}{x-2}\)
Để \(A\in Z\Rightarrow8⋮\left(x-2\right)\)
\(\Rightarrow x-2\in U\left(8\right)=\left\{1;2;4;8;-1;-2;-4;-8\right\}\)
\(\Rightarrow x=\left\{3;4;6;10;1;0;-2;-6\right\}\)