Chứng minh rằng ab + ba chia hết cho 11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Tacó:\hept{\begin{cases}2a+5⋮7\\7a+7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}5a+2⋮7\\7⋮7\end{cases}}\Rightarrow\hept{\begin{cases}10a+4⋮7\\7⋮7\end{cases}}\)
\(\Rightarrow10a+4+7=10a+11⋮7\left(dpcm\right)\)
b, tự tương
\(a,2a+5⋮7\Leftrightarrow2a+5+28a+28⋮7\) ( vì \(28a+28⋮7\) )
\(\Leftrightarrow30a+33⋮7\)
\(\Leftrightarrow3.\left(10a+11\right)⋮7\)
\(\Leftrightarrow10a+11⋮7\) ( vì \(\left(3;7\right)=1\) )
Vậy \(2a+5⋮7\Leftrightarrow10a+11⋮7\)
Câu b bn xem lại đề hộ mk chút nhé!
ab+ba=a0+b+b0+a=a.10+a+b.10+b=a.(10+1)+b.(10+1)=a.11+b.11 chia het cho 11
Chưa chắc 2x + 3y đã chia hết cho 11
Ví dụ : x = 1 và y = 2
thì 2x + 3y = 2 + 6 = 8 ko chia hết cho 11
Xem lại đề đi
c)
gọi 2 số chẳn liên tiếp là 2k ;2k+2 (k thuộc N)
ta có \(2k.\left(2k+2\right)=2k.2k+2k.2\)
\(=2.2.k.k+4k\)
\(=4k^2+4k\)
mà \(4k^2+4k\) chia hết cho 4
=>\(2k.\left(2k+2\right)\) chia hết cho 4
a)Goi 2 so tu nhien lien tiep la a;a+1
Neu a la so chan:a.(a+1) la so chan hay a.(a+1) chia het cho 2
Neu a la so le:a+1 la so le
Vay tich2 so tu nhien lien tiep chia het cho 2
Ta có: ab− ba = (10a + b) - (10b + a) = 9a - 9b = 9(a - b) chia hết cho 9 (điều phải chứng minh).
b) \(69^2-69.5\)
= 69 . 69 -69 . 5
= 69 . (69 - 5)
=69 . 64
Vì 64 \(⋮\)32 nên 69 . 64 hay \(69^2\)- 69.5 \(⋮\)32
Gọi 3 số tự nhiên đó là: \(n-1;\)\(n;\)\(n+1\) (\(n\ge1;\)\(n\in N\))
Tích 3 số là: \(A=\left(n-1\right)n\left(n+1\right)\)
- Nếu: \(n=3k\)thì: \(A⋮3\)
- Nếu: \(n=3k+1\)thì: \(n-1=3k+1-1=3k\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)
- Nếu: \(n=3k+2\)thì: \(n+1=3k+2+1=3k+3\)\(⋮\)\(3\)\(\Rightarrow\)\(A⋮3\)
Vậy tích 3 số tự nhoeen liên tiếp luôn chia hết cho 3
ab+ba chia hết cho 11
=(10a+1b)+(10b+1a) chia hết cho 11
=11ab+11ba chia hết cho 11
tích nhé