Tính :
A=\(\frac{1+2^2+2^3+....+2^{2016}}{2^{2018}-2}\)
làm ơn giúp mình với !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+2+3+...+2018=(1+2018)+(2+2017)+...(1009+1010)=2019x1009=2037171
B=(1+2019)+(3+2017)+...+(1009+1011)=2020x505=1020100
C=(2020+2)+(2018+4)+...+(1010+1012)=2022x505=1021110
ta có:
\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2017}}\)
\(\Rightarrow2A-A=2-\frac{1}{2^{2018}}\)
\(\Rightarrow A=\frac{2^{2019}-1}{2^{2018}}\)
\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2018}}\)
\(\Rightarrow2A=2+1+\frac{1}{2}+\frac{1}{2^2}+.......+\frac{1}{2^{2017}}\)
\(\Rightarrow2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+........+\frac{1}{2^{2017}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+......+\frac{1}{2^{2018}}\right)\)
\(\Rightarrow A=2-\frac{1}{2^{2018}}\)
\(\Rightarrow A=\frac{2^{2019}-1}{2^{2018}}\)
Mình giúp bạn nha!
A = 2017/1 + 2017/2 + 2017/3 + . . . + 2017/2018 / 2017/1 + 2016/2 + 2015/3 + . . .+ 1/2017
= 2017 . ( 1 + 1/2 + 1/3 + . . . +1/2018 ) / ( 2017 . 2016 . 2015 . . . 1) . ( 1 + 1/2 + 1/3 +. . . + 1/2017 )
= 1/2016 . 2015 . 2014. . . 1
k mình nha
a. S =1-2+3-4+...+2019-2020
S= (-1)+(-1)+...+(-1)/1010 số hạng
S=(-1). 1010
S=-1010
b.P= 0-2+4-6+...+2016-2018
P=(-2)+(-2)+...+(-2)/1010 số hạng
P=(-2).1010
P=-2020
????????????????????????????????????????????????????????????????????????????????????????????????????????????
Đặt \(B=1+2^2+2^3+...+2^{2016}\)
Gấp B lên 2 lần ta có :
2B = 2 . (1 + 2 + 22 + 23 + ... + 22016 )
2B = 2 + 22 + 23 + ... + 22017
2B - B = ( 2 + 22 + ... + 22017 ) - ( 1 + 2 + 22 + ... + 22016 )
B = 22017 - 2
Thay B vào ta có :
\(A=\frac{2^{2017}-2}{2^{2018}-2}\)
# Hoq chắc _ Baccanngon