K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019
https://i.imgur.com/zR7sLI8.jpg
5 tháng 4 2019

Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\)

\(2A=1-\frac{1}{2n+1}< 1\)

\(\Leftrightarrow A< \frac{1}{2}\)

đpcm

26 tháng 8 2015

Bài 1. Ta chứng minh \(A=10^{150}+5\cdot10^5+1\) không là số lập phương. 

Bổ đề. Một số lập phương không âm bất kì chia cho 9 chỉ có thể dư là 0,1 hoặc 8.

Chứng minh. Xét \(x\) là số tự nhiên bất kì. Nếu \(x\) chia hết cho 3  thì \(x^3\)  hiển nhiên chia hết cho 9 nên số dư chia cho 9 bằng 0.

Nếu \(x\) chia hết 3 dư là 1 thì \(x=3k+1\to x^3=\left(3k+1\right)^3=27k^3+27k^2+9k+1\) chia 9 có số dư là 1.

Nếu \(x\) chia hết 3 dư là 1 thì \(x=3k+2\to x^3=\left(3k+2\right)^3=27k^3+54k^2+18k+8\) chia 9 có số dư là 8.

Quay trở lại bài toán, ta thấy \(10\) chia 9 dư 1 nên \(A\) chia 9 dư là \(1+5+1=7\to\)\(A\) không thể là lập phương của số tự nhiên.

Bài 2. Ta chứng minh bài toán bằng quy nạp. Với n=****. Giả sử đúng đến n, thức là ta đã có \(1^3+2^3+\cdots+n^3=\left(1+2+\cdots+n\right)^2.\)

Khi đó \(1^3+2^3+\cdots+n^3+\left(n+1\right)^3=\left(1+2+\cdots+n\right)^2+\left(n+1\right)^3\)

\(=\frac{n^2\left(n+1\right)^2}{4}+\left(n+1\right)^3=\left(n+1\right)^2\cdot\frac{n^2+4n+4}{4}=\frac{\left(n+1\right)^2\left(n+2\right)^2}{4}.\)

Do đó ta có \(1^3+2^3+\cdots+\left(n+1\right)^3=\frac{\left(n+1\right)^2\left(n+2\right)^2}{4}=\left(1+2+\cdots+n+\left(n+1\right)\right)^2\)

30 tháng 3 2017

giup mink đi mấy bn

26 tháng 1 2021

1+2+3+4+5+6+7+8+9=133456 hi hi

7 tháng 11 2021

đào xuân anh sao mày gi sai hả

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!