K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2019

Áp dụng dãy tỉ số bằng nhau:

 \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{x+y+z}{1}=x+y+z\)

\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{a^2}=\frac{y^2}{b}=\frac{z^2}{c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)

=> \(x+y+z=x^2+y^2+z^2\)

Suy ra: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zt\right)=x+y+z+2\left(xy+yz+zt\right)\)

=> \(xy+yz+zt=\frac{1}{2}\left(x+y+z\right)^2-\frac{1}{2}\left(x+y+z\right)\)

Đặt x+y+z=t

Ta có: \(xy+yz+zt=\frac{1}{2}\left(t^2-t\right)\)

M=xy+yz+zt=\(\frac{1}{2}\left(t^2-t\right)+2015=\frac{1}{2}\left(t^2-2.t.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)+2015=\frac{1}{2}\left(t-\frac{1}{2}\right)^2-\frac{1}{8}+2015\)

\(=\frac{1}{2}\left(t-\frac{1}{2}\right)^2+\frac{16119}{8}>0\)

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

13 tháng 6 2020

Bài 2:

Ta có: M = a2+ab+b2 -3a-3b-3a-3b +2001

=> 2M = ( a2 + 2ab + b2) -4.(a+b) +4 + (a2 -2a+1)+(b2 -2b+1) + 3996

2M= ( a+b-2)2 + (a-1)2 +(b-1)+ 3996

=> MinM = 1998 tại a=b=1

13 tháng 6 2020

Câu 3: 

Ta có: P= x2 +xy+y2 -3.(x+y) + 3

=> 2P = ( x2 + 2xy +y2) -4.(x+y) + 4 + (x2 -2x+1) +(y2 -2y+1)

2P = ( x+y-2)2 +(x-1)2+(y-1)2

=> Min= 0 tại x=y=1

18 tháng 7 2016

1) Thay xyz = 1  , ta có : 

 \(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+xz}=\frac{z}{z+xz+xyz}+\frac{xz}{xz+xyz+xyz^2}+\frac{1}{1+z+xz}\)

\(=\frac{z}{z+xz+1}+\frac{xz}{xz+1+z}+\frac{1}{z+xz+1}=\frac{z+xz+1}{z+xz+1}=1\)

2) Phân tích A thành nhân tử được \(A=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)

Vì a + b + c = 0 nên A = 0

3) Phân tích  A thành  \(\frac{\left(b-a\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

7 tháng 4 2016

a, Ở phân số tử là a đầu tiên, thì nhân cả tử và mẫu cho c. Ở phân số thứ 2 có tử là b, nhân với ac, còn phân số còn lại giữ nguyên. Thì bạn sẽ có 3 phân số cùng mẫu nhé :3 Xong công vào ra 1 ^^

b, Viết bình phương (x+y+z)^2= bla blo :v Xong thay giữ kiện xy +yz+zx = 1 vào là done. Xong để có 10x^2+10y^2+z^2 thì dễ rồi nhé ^^

13 tháng 11 2019

a. Câu hỏi của Nguyễn Văn An - Toán lớp 8 - Học toán với OnlineMath

10 tháng 9 2017

lẽ ra x,y,z>0 chứ sao lại a,b,c>0 :))

Áp dụng bđt Cô-si:\(x^2+yz\ge2\sqrt{x^2.yz}=2x\sqrt{yz}\Leftrightarrow\frac{1}{x^2+yz}\le\frac{1}{2x\sqrt{yz}}\)

tương tự: \(\frac{1}{y^2+xz}\le\frac{1}{2y\sqrt{xz}};\frac{1}{z^2+xy}\le\frac{1}{2z\sqrt{xy}}\)

=>\(\frac{1}{x^2+yz}\)\(+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{xz}}+\frac{1}{2z\sqrt{xy}}=\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2xyz}\)

Mặt khác theo bđt Cô-si thì: \(\sqrt{xy}\le\frac{x+y}{2};\sqrt{yz}\le\frac{y+z}{2};\sqrt{xz}\le\frac{x+z}{2}\)

=>\(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\le\frac{x+y}{2}+\frac{y+z}{2}+\frac{x+z}{2}=\frac{2\left(x+y+z\right)}{2}=x+y+z\)

=>​\(\frac{1}{x^2+yz}+\frac{1}{y^2+xz}+\frac{1}{z^2+xy}\le\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2xyz}\le\frac{x+y+z}{2xyz}=\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}\right)\)

ta có đpcm.

10 tháng 9 2017

Áp dụng cauchy cho mỗi mẫu số vế trái , có :

\(VT\le\frac{1}{2x\sqrt{yz}}+\frac{1}{2y\sqrt{xz}}+\frac{1}{2z\sqrt{xy}}=\frac{1}{2}.\left(\frac{1}{x\sqrt{yz}}+\frac{1}{y\sqrt{xz}}+\frac{1}{z\sqrt{xy}}\right)\)

                                         \(=\frac{1}{2}.\left(\frac{\sqrt{yz}}{xyz}+\frac{\sqrt{xz}}{xyz}+\frac{\sqrt{zx}}{xyz}\right)=\frac{1}{2}.\frac{\sqrt{yz}+\sqrt{xz}+\sqrt{xz}}{xyz}\)

Biến đổi vế phải , có :

\(VP=\frac{1}{2}.\left(\frac{z}{xyz}+\frac{x}{xyz}+\frac{y}{xyz}\right)=\frac{1}{2}.\frac{x+y+z}{xyz}\)

Ta có :

\(x+y+z\ge\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)

<=> \(2x+2y+2z\ge2\sqrt{xy}+2\sqrt{yz}+2\sqrt{zx}\) (đúng - Hệ quả của Cauchy, lên mạng sợt là ra )

=> \(\frac{1}{2}.\frac{x+y+z}{xyz}\ge\frac{1}{2}.\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{zx}}{xyz}\)

=> \(VP\ge VT\)

15 tháng 5 2020

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé