Cho x^4/a+y^4/b=1/a+b
x^2+y^2=1
CMR bx^2=ay^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x^4/a + y^4/b = 1/(a + b)
<=> x^4/a + y^4/b = (x^2 + y^2)^2/(a + b).
Bn tự qui đồng và khử mẫu nha, xong thì đc : (a + b)(bx^4 + ay^4) = ab(x^4 + 2x^2y^2 + y^4)
<=> abx^4 + a^2y^4 + b^2x^4 + aby^4 = abx^4 + 2abx^2y^2 + aby^4
<=> a^2y^4 - 2abx^2y^4 + b^2x^4 = 0
<=> (ay^2 - bx^2)^2 = 0
<=> ay^2 - bx^2 = 0
<=> bx^2 = ay^2 => đpcm
Ta có :
A= ax+ay+bx+by+x+y
= a(x+y)+b(x+y)+x+y
= (a+b+1)(x+y)
= (\(\dfrac{1}{3}\)+1).\(\dfrac{-9}{4}\)
= \(\dfrac{4}{3}.\dfrac{-9}{4}\)
= -3
B= ax+ay-bx-by-x-y
= a(x+y)-b(x+y)-(x+y)
= (a-b-1)(x+y)
= (\(\dfrac{1}{2}\)-1).\(\dfrac{1}{2}\)
= \(\dfrac{-1}{2}.\dfrac{1}{2}\)
= \(\dfrac{-1}{4}\)
giúp mk vs các bn ui, mai mk nộp bài rùi, mk cần gấp lắm lắm,...giúp mk nha....
\(x^2+y^2=1\Rightarrow\left(x^2+y^2\right)^2=1\Rightarrow x^4+y^4+2x^2y^2=1\)
\(\Rightarrow\frac{1}{a+b}=\frac{x^4+y^4+2x^2y^2}{a+b}\)
Ta có:
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{x^4+y^4+2x^2y^2}{a+b}\Leftrightarrow\frac{bx^4+ay^4}{ab}=\frac{x^4+y^4+2x^2y^2}{a+b}\)
\(\Leftrightarrow\left(bx^4+ay^4\right)\left(a+b\right)=ab\left(x^4+y^4+2x^2y^2\right)\)
\(\Leftrightarrow abx^4+b^2x^4+a^2y^4+aby^4=abx^4+aby^4+2abx^2y^2\)
\(\Leftrightarrow\left(bx^2\right)^2+\left(ay^2\right)^2-2abx^2y^2=0\)
\(\Leftrightarrow\left(bx^2-ay^2\right)^2=0\)
\(\Leftrightarrow bx^2-ay^2=0\)
\(\Rightarrow bx^2=ay^2\)
\(a,xy+1-x-y\)
\(=\left(xy-y\right)+\left(1-x\right)\)
\(=y\left(x-1\right)- \left(x-1\right)\)
\(=\left(x-1\right)\left(y-1\right)\)
\(b,ax+ay-3x-3y\)
\(=a\left(x+y\right)-3\left(x+y\right)\)
\(=\left(x+y\right)\left(a-3\right)\)
\(c,x^3-2x^2+2x-4\)
\(=x^2\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x^2+2\right)\left(x-2\right)\)
\(d,x^2+ab+ax+bx\)
\(=\left(x^2+ax\right)+\left(ab+bx\right)\)
\(=x\left(a+x\right)+b\left(a+x\right)\)
\(=\left(a+x\right)\left(b+x\right)\)
\(e,16-x^2+2xy-y^2\)
\(=4^2-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
Ta có: \(\left(ax+by\right)^2=\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(\Leftrightarrow a^2x^2+2abxy+b^2y^2=a^2x^2+a^2y^2+x^2b^2+b^2y^2\)
\(\Leftrightarrow2abxy=a^2y^2+x^2b^2\)
\(\Leftrightarrow\left(ay-xb\right)^2=0\)
\(\Leftrightarrow ay=xb\)
hay \(\dfrac{a}{x}=\dfrac{b}{y}\)