K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

\(M=a^2-\frac{2.ab.1}{2}+\left(\frac{1}{2}b\right)^2+\frac{3}{4}b^2=\left(a-\frac{1}{2}b\right)^2+\frac{3}{4}b^2\ge0\)

Dấu = xảy ra khi \(\hept{\begin{cases}\frac{3}{4}b^2=0\\a=\frac{1}{2}b\end{cases}}\Leftrightarrow a=b=0\)

NV
12 tháng 3 2023

\(\Delta'=\left(m-1\right)^2+m+3=m^2-m+4=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{2}>0;\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

a.

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4\left(m-1\right)^2+2\left(m+3\right)=4m^2-6m+10\)

\(=4\left(m-\dfrac{3}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{3}{4}\)

Dấu = xảy ra khi \(m=\dfrac{3}{4}\)

b.

\(x_1^2+x_2^2=8m^3-8m^2\)

\(\Leftrightarrow4m^2-6m+10=8m^3-8m^2\)

\(\Leftrightarrow8m^3-12m^2+6m-1=9\)

\(\Leftrightarrow\left(2m-1\right)^3=9\)

\(\Leftrightarrow2m-1=\sqrt[3]{9}\)

\(\Rightarrow m=\dfrac{1+\sqrt[3]{9}}{2}\)

a: Δ=(2m-2)^2-4(-m-3)

=4m^2-8m+4+4m+12

=4m^2-4m+16

=4m^2-4m+1+15=(2m-1)^2+15>0

=>Phương trình luôn có 2 nghiệm pb

A=x1^2+x2^2

=(x1+x2)^2-2x1x2

=(2m-2)^2-2(-m-3)

=4m^2-8m+4+2m+6

=4m^2-6m+10

=4(m^2-3/2m+5/2)

=4(m^2-2*m*3/4+9/16+31/16)

=4(m-3/4)^2+31/4>=31/4

Dấu = xảy ra khi m=3/4

b: x1^2+x2^=8m^3-8m^2

=>4m^2-6m+10=8m^3-8m^2

=>8m^3-8m^2-4m^2+6m-10=0

=>8m^3-12m^2+6m-10=0

=>\(m\simeq1,54\)

8 tháng 12 2019

Áp dụng bđt bunhia cho 2 bộ số \(\left(\frac{a}{x};\frac{b}{y}\right),\left(x;y\right)\)ta được

\(\left(\frac{a}{x}+\frac{b}{y}\right)\left(x+y\right)\ge\left(\sqrt{\frac{a}{x}.x}+\sqrt{\frac{b}{y}.y}\right)^2\)

\(\rightarrow x+y\ge\left(\sqrt{a}+\sqrt{b}\right)^2\)

\(MinS=\left(\sqrt{a}+\sqrt{b}\right)^{22}\)

a: Khi m=-5 thì y=2(-5+1)x-(-5)+4

=>y=-8x+9

PTHĐGĐ là:

x^2+8x-9=0

=>(x+9)(x-1)=0

=>x=1 hoặc x=-9

=>y=1 hoặc y=81

b: \(A=\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(2m+2\right)^2-4\left(m-4\right)}\)

\(=\sqrt{4m^2+8m+4-4m+16}\)

\(=\sqrt{4m^2+4m+20}\)

\(=\sqrt{\left(2m+1\right)^2+19}>=\sqrt{19}\)

Dấu = xảy ra khi m=-1/2

2 tháng 4 2018

viết ko có mũ thì hiểu sao dc

NV
31 tháng 8 2020

Bạn xem lại đề bài

\(2m^2-2mx....\) có gì đó sai sai