CTR
A=1/2-1/2^2+1/2^3-1/2^4+....+1/2^2n < 1/3
chiều mai mik nộp rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^2+4^2+...+\left(2n\right)^2=2^2\left(1^2+2^2+...+n^2\right)\)
\(=\frac{2^2.n\left(n+1\right)\left(2n+1\right)}{6}=\frac{2n\left(n+1\right)\left(2n+1\right)}{3}\)
\(\Rightarrow\) Sai, nhưng số 1 và số 4 khi viết trên bảng rất giống nhau, bạn có chắc mình ko nhìn nhầm và chép nhầm đề ko?
\(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\)
Do \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}>0\) nên \(1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}>1\) (đúng)
Lại nghi ngờ bạn chép nhầm đề, ko ai cho đề bài kiểu này cả, hoặc là vế phải là số 2, hoặc vế trái bạn thừa số 1 đầu tiên
ta thấy:
A<\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{100.101}=\frac{1}{2}-\frac{1}{101}=\frac{99}{202}< 1\)
mà 1<2
=>A<2
vậy.......................
(3\(x\) - 2)(\(x+4\)) - (1- \(x\))(2-\(x\)) =(\(x+1\))(\(x-2\))
3\(x^2\) + 12\(x\) - 2\(x\) - 8 - (\(x+1\))(\(x-2\)) - [-(\(x-2\))](1- \(x\)) = 0
3\(x^2\) + 10\(x\) - 8 - (\(x-2\))( \(x\) + 1 - 1 + \(x\)) = 0
3\(x^2\) + 10\(x\) - 8 - (\(x-2\)). 2\(x\) = 0
3\(x^2\) + 10\(x\) - 8 - 2\(x^2\) + 4\(x\) = 0
\(x^2\) + 14\(x\) - 8 = 0
\(x^2\) + 7\(x\) + 7\(x\) + 49 - 57 = 0
\(x\)( \(x\) + 7) + 7(\(x\) + 7) = 57
(\(x+7\))(\(x\) + 7) =57
(\(x+7\))2 = 57
\(\left[{}\begin{matrix}x+7=\sqrt{57}\\x+7=-\sqrt{57}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-7+\sqrt{57}\\x=-7-\sqrt{57}\end{matrix}\right.\)
Vậy \(x\) \(\in\) { -7 - \(\sqrt{57}\); - 7 + \(\sqrt{57}\)}
Bài 1 :
a, \(\frac{3}{4}:x=\frac{5}{12}\)
\(x=\frac{3}{4}:\frac{5}{12}\)
\(x=\frac{9}{5}\)
b, \(x-\frac{1}{2}=\frac{3}{4}:\frac{3}{2}\)
\(x-\frac{1}{2}=\frac{1}{2}\)
\(x=\frac{1}{2}+\frac{1}{2}\)
\(x=1\)
c, \(1\frac{1}{2}x-\frac{1}{2}=\frac{3}{4}\)
\(\frac{3}{2}x-\frac{1}{2}=\frac{3}{4}\)
\(\frac{3}{2}x=\frac{3}{4}+\frac{1}{2}\)
\(\frac{3}{2}x=\frac{5}{4}\)
\(x=\frac{5}{4}:\frac{3}{2}\)
\(x=\frac{5}{6}\)
Bài 2 :
\(A=\frac{-3}{5}+\left(\frac{-2}{5}-99\right)\)
\(A=\frac{-3}{5}+\frac{-2}{5}-99\)
\(A=\left(-1\right)-99\)
\(A=-100\)
\(B=\left(7\frac{2}{3}+2\frac{3}{5}\right)-6\frac{2}{3}\)
\(B=\left(\frac{23}{3}+\frac{13}{5}\right)-\frac{20}{3}\)
\(B=\frac{23}{3}+\frac{13}{5}-\frac{20}{3}\)
\(B=\left(\frac{23}{3}-\frac{20}{3}\right)+\frac{13}{5}\)
\(B=1+\frac{13}{5}\)
\(B=\frac{18}{5}\)
\(a,\frac{1}{n+1}+\frac{1}{n+2}+......+\frac{1}{2n}\)
\(>\frac{1}{2n}+\frac{1}{2n}+.......+\frac{1}{2n}\) có \(n\) số \(\frac{1}{2n}\)
\(=n.\frac{1}{2n}=\frac{1}{2}\)
\(b,\frac{1}{1^2}+\frac{1}{2^2}+......+\frac{1}{n^2}< \frac{1}{1}+\frac{1}{1.2}+........+\frac{1}{\left(n-1\right).n}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{n-1}-\frac{1}{n}\)
\(=2-\frac{1}{n}\)