So sánh phân số:
A= 102013+1/102012+1
B= 102014+1/102013+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10\equiv1\left(mod3\right)\Leftrightarrow10^{2013}\equiv1\left(mod3\right)\\ 2014\equiv1\left(mod3\right)\\ \Leftrightarrow10^{2013}-2014\equiv1-1=0\left(mod3\right)\\ \Leftrightarrow10^{2013}-2014⋮3\)
a: \(\dfrac{-8}{31}=\dfrac{-8\cdot101}{31\cdot101}=\dfrac{-808}{3131}\)
\(\dfrac{-789}{3131}=\dfrac{-789}{3131}\)
b: Thiếu phân số thứ hai rồi bạn
c: \(\dfrac{1}{n}=\dfrac{n+1}{n\left(n+1\right)}\)
\(\dfrac{1}{n+1}=\dfrac{n}{n\left(n+1\right)}\)
Lời giải:
a.
$32^{47}=(2^5)^{47}=2^{5.47}=2^{235}$
$64^{33}=(2^6)^{33}=2^{6.33}=2^{198}$
Vì $2^{235}> 2^{198}$ nên $32^{47}> 64^{33}$
b.
$(\frac{1}{2})^{30}=\frac{1}{2^{30}}=\frac{1}{8^{10}}$
$(\frac{1}{3})^{20}=\frac{1}{3^{20}}=\frac{1}{9^{10}}$
Hiển nhiên $8^{10}< 9^{10}\Rightarrow \frac{1}{8^{10}}> \frac{1}{9^{10}}$
$\Rightarrow (\frac{1}{2})^{30}> (\frac{1}{3})^{20}$
a: so sánh với 1
64/85 < 73/81
b: so sánh với 1
n + 1/n+2 > n/ n+3
c: so sánh với 1
64/65 > 60/61
d: so sánh với 1
99/97 < 88/86
`a)1<3`
`=>1/5<3/5`
`b)21>9`
`=>8/21<8/9`
`c)3/5<5/5=1`
`d)7/5>5/5=1`
a) \(< \)
b) \(>\)
c) \(< \)
d) \(>\)
e) \(< \)
g) \(>\)
h) \(>\)
k) \(>\)
a) \(\dfrac{2}{5}=\dfrac{4}{10}\)
\(\dfrac{4}{10}>\dfrac{3}{10}\)
b) \(\dfrac{5}{6}=\dfrac{10}{12}\)
\(\dfrac{7}{12}< \dfrac{10}{12}\)
c) \(\dfrac{1}{2}=\dfrac{2}{4}\)
\(\dfrac{3}{4}< \dfrac{2}{4}\)
d) \(\dfrac{8}{3}=\dfrac{56}{21}\)
\(\dfrac{56}{21}>\dfrac{11}{21}\)
\(\dfrac{1}{10}A=\dfrac{10^{2012}+1}{10^{2012}+10}=1-\dfrac{9}{10^{2012}+10}\)
\(\dfrac{1}{10}B=\dfrac{10^{2011}+1}{10^{2011}+10}=1-\dfrac{9}{10^{2011}+10}\)
10^2012+10>10^2011+10
=>9/10^2012+10<9/10^2011+10
=>-9/10^2012+10>-9/10^2011+10
=>A>B