K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 4 2019

a/ Với \(x\ge2\) pt trở thành:

\(x-2+3x-9=0\)

\(\Leftrightarrow4x-11=0\Rightarrow x=\frac{11}{4}\) (nhận)

Với \(x< 2\) pt trở thành:

\(2-x+3x-9=0\)

\(\Leftrightarrow2x-7=0\Rightarrow x=\frac{7}{2}>2\left(l\right)\)

b/

\(\left(x^2-5x+1\right)^2-2\left(x^2-5x+1\right)+1=0\)

\(\Leftrightarrow\left(x^2-5x+1-1\right)^2=0\)

\(\Leftrightarrow\left(x^2-5x\right)^2=0\)

\(\Leftrightarrow x^2-5x=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

5 tháng 4 2019

a) \(\left|x-2\right|+3x-9=0\)

\(\Leftrightarrow\left|x-2\right|=9-3x\)=> \(9-3x>0\Leftrightarrow x< 3\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=9-3x\\x-2=3x-9\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}4x=11\\-2x=-7\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{4}\left(tm\right)\\x=\frac{7}{2}\left(ktm\right)\end{cases}}\)

24 tháng 1 2018

a) đặt \(\left(x^2+x\right)\)là \(y\)

ta có: \(3y^2-7y+4\)\(=0\)

<=>\(\left(3y-4\right)\left(y-1\right)=0\)

còn lại bạn tự xử nhé 

2 tháng 4 2019

a) \(\left|x-2\right|+3x-9=0\)

\(\Leftrightarrow\left|x-2\right|=9-3x\)

+) Xét \(x\ge2\)

\(pt\Leftrightarrow x-2=9-3x\)

\(\Leftrightarrow x+3x=9+2\)

\(\Leftrightarrow4x=11\)

\(\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)

+) Xét \(x< 2\)

\(pt\Leftrightarrow2-x=9-3x\)

\(\Leftrightarrow-x+3x=9-2\)

\(\Leftrightarrow2x=7\)

\(\Leftrightarrow x=\frac{7}{2}\left(ktm\right)\)

Vậy....

a: =>10x-4=15-9x

=>19x=19

hay x=1

b: \(\Leftrightarrow3\left(10x+3\right)=36+4\left(8x+6\right)\)

=>30x+9=36+32x+24

=>30x-32x=60-9

=>-2x=51

hay x=-51/2

c: \(\Leftrightarrow2x+\dfrac{6}{5}=5-\dfrac{13}{5}-x\)

=>3x=6/5

hay x=2/5

d: \(\Leftrightarrow\dfrac{7x}{8}-\dfrac{5\left(x-9\right)}{1}=\dfrac{20x+1.5}{6}\)

\(\Leftrightarrow21x-120\left(x-9\right)=4\left(20x+1.5\right)\)

=>21x-120x+1080=80x+60

=>-179x=-1020

hay x=1020/179

e: \(\Leftrightarrow5\left(7x-1\right)+60x=6\left(16-x\right)\)

=>35x-5+60x=96-6x

=>95x+6x=96+5

=>x=1

f: \(\Leftrightarrow6\left(x+4\right)+30\left(-x+4\right)=10x-15\left(x-2\right)\)

=>6x+24-30x+120=10x-15x+30

=>-24x+96=-5x+30

=>-19x=-66

hay x=66/19

NV
20 tháng 8 2021

a.

ĐKXĐ: \(x^2+2x-1\ge0\)

\(x^2+2x-1+2\left(x-1\right)\sqrt{x^2+2x-1}-4x=0\)

Đặt \(\sqrt{x^2+2x-1}=t\ge0\)

\(\Rightarrow t^2+2\left(x-1\right)t-4x=0\)

\(\Delta'=\left(x-1\right)^2+4x=\left(x+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=1-x+x+1=2\\t=1-x-x-1=-2x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=2\\\sqrt{x^2+2x-1}=-2x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-5=0\\3x^2-2x+1=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=-1\pm\sqrt{6}\)

NV
20 tháng 8 2021

b.

ĐKXĐ: \(x\ge\dfrac{1}{5}\)

\(2x^2+x-3+2x-\sqrt{5x-1}+2-\sqrt[3]{9-x}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{\left(x-1\right)\left(4x-1\right)}{2x+\sqrt[]{5x-1}}+\dfrac{x-1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt[]{5x-1}}+\dfrac{1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}\right)=0\)

\(\Leftrightarrow x=1\) (ngoặc đằng sau luôn dương)

3 tháng 4 2020

a) 4         b) 0,6 hoặc 1,75     e) -3,5 hoặc -3

12 tháng 1 2017

làm tạm câu này vậy

a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)

\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)

\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)

\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)

\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)

\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)

Vậy...

12 tháng 1 2017

chuẩn

a: =>|x-7|=3-2x

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(-2x+3\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3-x+7\right)\left(2x-3+x-7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(x+4\right)\left(3x-10\right)=0\end{matrix}\right.\Leftrightarrow x=-4\)

b: =>|2x-3|=4x+9

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(4x+9-2x+3\right)\left(4x+9+2x-3\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{9}{4}\\\left(2x+12\right)\left(6x+6\right)=0\end{matrix}\right.\Leftrightarrow x=-1\)

c: =>3x+5=2-5x hoặc 3x+5=5x-2

=>8x=-3 hoặc -2x=-7

=>x=-3/8 hoặc x=7/2

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn