Cho đa thức g(x)=1+x+x^2+x^3+...+x^2020
Tính g(-1),g(2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: f(-1)=0
=>1+m-1+3m-2=0 và
=>4m-2=0
=>m=1/2
2: g(2)=0
=>2^2-4(m+1)-5m+1=0
=>4-5m+1-4m-4=0
=>-9m+1=0
=>m=1/9
4: f(1)=g(2)
=>1-(m-1)+3m-2=4-4(m+1)-5m+1
=>1-m+1+3m-2=4-4m-4-5m+1
=>2m-2=-9m+1
=>11m=3
=>m=3/11
3:
H(-1)=0
=>-2-m-7m+3=0
=>-8m=-1
=>m=1/8
5: g(1)=h(-2)
=>1-2(m+1)-5m+1=-8-2m-7m+3
=>-5m+2-2m-2=-9m-5
=>-7m=-9m-5
=>2m=-5
=>m=-5/2
a) \(f\left(x\right)=x^2-\left(m-1\right)x+3m-2\)
Để đa thức f(x) có nghiệm là -1 khi:
\(f\left(-1\right)=\left(-1\right)^2-\left(m-1\right).\left(-1\right)+3m-2=0\)
\(\Rightarrow1+m-1+3m-2=0\)
\(\Rightarrow4m=2\Rightarrow m=\dfrac{1}{2}\)
b) \(g\left(x\right)=x^2-2\left(m+1\right)x-5m+1\)
Để đa thức g(x) có nghiệm là 2 khi:
\(g\left(2\right)=2^2-2\left(m+1\right).2-5m+1=0\)
\(\Rightarrow4-4\left(m+1\right)-5m+1=0\)
\(\Rightarrow4-4m-1-5m+1=0\)
\(\Rightarrow-9m=-4\Rightarrow m=\dfrac{4}{9}\)
c) \(h\left(x\right)=-2x^2+mx-7m+3\)
Để đa thức h(x) có nghiệm là -1 khi:
\(h\left(-1\right)=-2\left(-1\right)^2+m.\left(-1\right)-7m+3=0\)
\(\Rightarrow-2-m-7m+3=0\)
\(\Rightarrow-8m=-1\Rightarrow m=\dfrac{1}{8}\)
d) -Để \(f\left(1\right)=g\left(2\right)\) khi và chỉ khi
\(1^2-\left(m-1\right).1+3m-2=2^2-2\left(m+1\right).2-5m+1\)
\(\Rightarrow1-m+1+3m-2=4-4m-4-5m+1\)
\(\Rightarrow11m=1\Rightarrow m=\dfrac{1}{11}\)
-Để \(g\left(1\right)=h\left(-2\right)\) khi và chỉ khi
\(1^2-2\left(m+1\right).1-5m+1=-2\left(-2\right)^2+m.\left(-2\right)-7m+3\)
\(\Rightarrow1-2m-2-5m+1=-8-2m-7m+3\)
\(\Rightarrow2m=-5\Rightarrow m=-\dfrac{5}{2}\)
a: g(1)=1-3=-2
g(1/3)=1-1=0
f(-2)+g(0)=\(\left(-2\right)^2-2\cdot\left(-2\right)+1=4+4+1=9\)
b: g(x)=0
nên 1-3x=0
=>x=1/3
f(x)=0 nên \(x^2-2x=0\)
=>x=0 hoặc x=2
Bài 1
Gợi ý bạn làm : Bạn thay \(x=-4;x=-3;x=0;x=1\) vào \(f\left(x\right);g\left(x\right)\)
\(\Rightarrow\) Nếu kết quả ra giống nhau thì là nghiệm , ra khác nhau thì không là nghiệm
VD : Thay \(x=-4\) vào \(f\left(x\right)\) và \(g\left(x\right)\)
\(f\left(-4\right)=4.\left(-4\right)^4-5\left(-4\right)^3+3.\left(-4\right)+2=1334\)
\(g\left(x\right)=-4.\left(-4\right)^4+5\left(-4\right)^3+7=-1337\)
Ra hai kết quả khác nhau
\(\Rightarrow x=-4\) không là nghiệm
Bài 2
\(f\left(x\right)-g\left(x\right)=\left(-x^5+3x^2+4x+8\right)-\left(-x^5-3x^2+4x+2\right)\\ =-x^5+3x^2+4x+8+x^5+3x^2-4x-2\\ =\left(-x^5+x^5\right)+\left(3x^2+3x^2\right)+\left(4x-4x\right)+\left(8-2\right)\\ =6x^2+6\\ =x^2+1\\ =x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
\(\Rightarrow\) phương trình vô nghiệm
f(x)=x^3-2x^2+3x+1
g(x)=x^3+x^2-5x+3
a: f(-1/3)=-1/27-2/9-1+1=-1/27-6/27=-7/27
g(-2)=-8+4+10+3=17-8=9
b: f(x)-g(x)=x^3-2x^2+3x+1-x^3-x^2+5x-3
=x^2+8x-2
f(x)+g(x)
=x^3-2x^2+3x+1+x^3+x^2-5x+3
=2x^3-x^2-2x+4
Ta có: \(\left\{{}\begin{matrix}\left(-1\right)^{2n}=1\\\left(-1\right)^{2n+1}=-1\end{matrix}\right.\) với mọi \(n\in N\)
\(\Rightarrow g\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{2020}\)
\(g\left(-1\right)=1-1+1-1+...+1-1+1\)
\(g\left(-1\right)=0+0+0+...+0+1=1\)
Lại có:
\(g\left(2\right)=1+2+2^2+2^3+...+2^{2020}\)
\(\Rightarrow2.g\left(2\right)=2+2^2+2^3+...+2^{2020}+2^{2021}\)
\(\Rightarrow2.g\left(2\right)+1-2^{2021}=1+2+2^2+2^3+...+2^{2020}\)
\(\Rightarrow2.g\left(2\right)+1-2^{2021}=g\left(2\right)\)
\(\Rightarrow g\left(2\right)=2^{2021}-1\)
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
mik nghĩ
bn có thể tham khảo ở link :
https://olm.vn/hoi-dap/question/902782.html
~~ hok tốt ~
Đặt f(x)=0
=>(x-1)(x-2)=0
=>x=1 hoặc x=2
THeo đề, ta có hệ:
g(1)=0 và g(2)=0
=>\(\left\{{}\begin{matrix}2-a+b+4=0\\16-4a+2b+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a+b=-6\\-4a+2b=-20\end{matrix}\right.\)
=>a=4; b=-2
=>\(g\left(x\right)=2x^3-4x^2-2x+4\)
g(-1)=2*(-1)^3-4*(-1)^2-2*(-1)+4
=-2-4+2+4
=4
\(g\left(x\right)=1+x+x^2+x^3+....+x^{2020}\)
\(\Rightarrow g\left(x\right)\cdot x=x+x^2+x^3+x^4+......+x^{2021}\)
\(\Rightarrow g\left(x\right)\cdot\left(x-1\right)=x^{2021}-1\)
\(\Rightarrow g\left(x\right)=\frac{x^{2021}-1}{x-1}\)
\(\Rightarrow\hept{\begin{cases}g\left(-1\right)=\frac{\left(-1\right)^{2021}-1}{-1-1}=-1\\g\left(2\right)=\frac{2^{2021}-1}{2-1}=2^{2021}-1\end{cases}}\)