cho a,b,c>0. CMR:4(a+b+c)(ab+ac+bc)< hoặc =(a+b+c)^3+9abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow2+9abc\ge7\left(ab+bc+ca\right)\)(1)
Đặt \(\left\{{}\begin{matrix}abc=r\\ab+bc+ca=q\\a+b+c=p\end{matrix}\right.\)
Ta có:\(r\ge\frac{p\left(4q-p^2\right)}{9}\)(cái này bạn gõ schur trên gg là ra)
\(\Leftrightarrow9r\ge4q-1\)
\(\Rightarrow2+9r\ge2+4q-1=1+4q\)
Lại có:\(3q\le p^2=1\)(bạn tự chứng minh)
\(\Rightarrow1+4q\ge3q+4q=7q\)
\(\Rightarrow2+9r\ge7q\left(đpcm\right)\)
"="\(\Leftrightarrow a=b=c=\frac{1}{3}\)
Cho a,b,c > 0 CMR :
\(a+b+c+\frac{9abc}{ab+bc+ca}\ge4(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a})\)
Ta có: a , b , c > 0 => a , b , c là 3 số thực dương thỏa mãn điều kiện: ab + ac + bc = 0
Áp dụng tính chất tỉ dãy số bằng nhau ta có:
\(\frac{a^4}{b+3c}+\frac{b^4}{c+3a}+\frac{c^4}{a+3b}=\frac{a^4+b^4+c^4}{b+3+c+3a+a+3b}\)
\(\Leftrightarrow\frac{a^4+b^4+c^4}{4a+4b+4c}=\frac{a^4+b^4+c^4}{4\left(a+b+c\right)}=\frac{3}{4}\) (Đúng với đề bài)
\(\RightarrowĐPCM\)
Ps; Không chắc nha! Mình chưa học lớp 9
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2