Cho tam giác ABC có các góc nhọn. Ở phía ngoài tam giác, vẽ các tam giác đều ABM và ACN.
a)Cmr: CM=BN
b) Gọi K là giao điểm của BN và CM. Tính góc BKC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, góc MAB = góc CAN = 60 do tam giác ABM và ACN đều (gt)
góc MAB + góc BAC = góc MAC
góc CAN + góc BAC = góc BAN
=> góc MAC = góc BAN
xét tam giác MAC và tam giác BAN có : MA = AB do tam giác MAB đều (gt)
AN = AC do tam giác CAN đều (gt)
=> tam giác MAC = tam giác BAN
=> CM = BN (ĐN)
b) Theo câu a ta có Δ AMC=ΔABN
=> \(\widehat{AMC}=\widehat{ABN}\)
Hay \(\widehat{AMC}=\widehat{ABK}\)
Ta có \(\widehat{BKC}\) là góc ngoài tại đỉnh K của Δ MKB
⇒ \(\widehat{BKC}=\widehat{MBK}+\widehat{BMK}\) ( tính chất góc ngoài )
⇒ \(\widehat{BKC}=\widehat{MBA}+\widehat{ABK}+\widehat{BMK}\)
\(\Rightarrow\widehat{BKC}=\widehat{MBA}+\widehat{AMB}\)
\(\Rightarrow\widehat{BKC}=60^o+60^o=120^o\)
+) Trên tia MK lấy điểm N sao cho KB = KN
+) Lại có \(\widehat{NKB}+\widehat{CKB}=180^o\) ( 2 góc kề bù )
\(\Rightarrow\widehat{NKB}+120^o=180^o\)
\(\Rightarrow\widehat{NKB}=60^o\)
+) Xét Δ NKB có
\(\hept{\begin{cases}\widehat{NKB}=60^o\\KB=KN\end{cases}}\) ( cmt và cách dựng )
⇒Δ NKB đều
⇒ \(\widehat{NKB}=60^o\)
( tính chất tam giác đều )
Hay \(\widehat{MKB}=60^o\)
@@ Học tốt
@Trần Việt Linh
@soyeon_Tiểubàng giải
@Hoàng Lê Bảo Ngọc
@Lê Nguyên Hạo
a: Xét ΔABN và ΔAMC có
AB=AM
góc BAN=góc MAC
AN=AC
Do đó: ΔABN=ΔAMC
Gọi giao của ME với AB là D, NE với AC là F
góc AMD+góc MDA=90 độ
=>góc AMD+góc BDE=90 độ
=>góc DBE+góc BDE=90 độ
=>góc BED=90 độ
=>BN vuông góc với CM
b: BC^2+MN^2=BE^2+CE^2+ME^2+NE^2
=CN^2+BM^2
=>MN^2=7+5-3=9cm
=>MN=3cm
a: Xét ΔABN và ΔAMC có
AB=AM
góc BAN=góc MAC
AN=AC
Do đó: ΔABN=ΔAMC
Gọi giao của ME với AB là D, NE với AC là F
góc AMD+góc MDA=90 độ
=>góc AMD+góc BDE=90 độ
=>góc DBE+góc BDE=90 độ
=>góc BED=90 độ
=>BN vuông góc với CM
b: BC^2+MN^2=BE^2+CE^2+ME^2+NE^2
=CN^2+BM^2
=>MN^2=7+5-3=9cm
=>MN=3cm