Cho tam giác đều ABC nội tiếp đường tròn đường kính AD. Gọi M là một điểm di động trên cung nhỏ AB( M ko trùng A và B)
a, Chứng minh rằng MD la đường phân giác của góc BMC
b, Cho AD=2R. Tính diện tích tứ giác ABDC theo R
c, Gọi K là giao điểm của AB và MD, H là giao điểm của AD và MC. Chứng minh rằng 3 đường AM,BD,HK đồng quy
a/ Trọng tâm của tam giác cũng là tâm của đường tròn nội tiếp và ngoại tiếp.
ΔABC đều, AD là đường kính cũng là tia phân giác của góc BAC
⇒ góc BAD = góc DAC ⇒ cung BD = cung DC
⇒ góc BMD = góc DMC ⇒ MD là tia phân giác góc BMC.
b/
ΔACD vuông tại C (do nội tiếp dường tròn đường kính AD = 2R) có góc DAC =1/2 góc BAC = 30º nên là nửa tam giác đều ⇒ AC = R√3, DC = R
Diện tích ΔACD: 1/2AC*CD = 1/2R√3*R = √3R² /2
ΔACD = ΔABD (c.g.c) ⇒ dthtABCD =2dtΔACD = 2*√3R² /2 = √3R²
c/
Gọi I là giao điểm của AM và DB
góc ABD = góc AMD = 90º (2góc nội tiếp đường tròn đk AD)
⇒ AB, DM là hai đường cao của ΔIAD
K là trực tâm của tam giác nên IK ⊥ AD (1)
AC=AB ⇒ cung AC = cung AB ⇒ góc AMC = góc ADB hay góc AMH = góc HDI
góc AMH kề bù với góc HMI nên góc HMI + góc HDI = 180º
⇒ tứ giác IMHD nội tiếp đường tròn đường kính ID.
⇒ góc IMD = góc IHD = 90º
⇒ IH ⊥ AD (2)
Từ (1),(2) ⇒ I, H, K thẳng hàng
hay ba đường thẳng AM, BD, HK đồng quy tại I.