K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 3 2019

Lời giải:
Vì $x,y$ là các số dương nên

\(\left\{\begin{matrix} x-y=x^3+y^3>x^3-y^3\\ x-y=x^3+y^3>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} (x-y)> (x-y)(x^2+xy+y^2)\\ x-y>0\end{matrix}\right.\)

\(\Rightarrow x^2+xy+y^2< 1\)

\(x^2+xy+y^2>x^2+y^2, \forall x,y>0\)

\(\Rightarrow x^2+y^2< 1\)

Ta có đpcm.

12 tháng 10 2017

drthe46he46he46

6 tháng 4 2021

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(x\cdot1+y\cdot1\right)^2\le\left(1^2+1^2\right)\left(x^2+y^2\right)=2\Rightarrow x+y\le\sqrt{2}\)

Áp dụng bất đẳng thức Bunhiacopxki ta có:

\(\left(x\sqrt{1+y}+y\sqrt{1+x}\right)^2\le\left(x^2+y^2\right)\left(1+y+1+x\right)=x+y+2=2+\sqrt{2}\)

\(\Rightarrow x\sqrt{y+1}+y\sqrt{x+1}\ge\sqrt{2+\sqrt{2}}\)

Dấu = xảy ra khi \(x=y=\dfrac{1}{\sqrt{2}}\)

pro ghê ta yeu

7 tháng 5 2018

\(x^2+y^2< 1\Leftrightarrow\left(x-y\right)\left(x^2+y^2\right)< x^3+y^3\) (Vì \(x-y=x^3+y^3\))

\(\Leftrightarrow x^3+y^3>x^3-y^3+xy^2-x^2y\)

\(\Leftrightarrow2y^3-xy^2+x^2y>0\)

\(\Leftrightarrow y\left(2y^2+x^2-xy\right)>0\)

BĐT cuối luôn đúng theo AM-GM và x,y dương

Vậy ta có ĐPCM

6 tháng 2 2023

nếu để (x-y)(x+ y^2) < x3+y3 thì ngkhac đổi VP sang VT thì khi đó chẳng phải VT<0 đk ạ? lmsao để chứng minh cách này đúng?

 

28 tháng 2 2021

Áp dụng bđt Cô-si vào 2 số dương có:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}\ge4\)

\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}=2\sqrt{4}=4\)

Dấu = xảy ra \(\Leftrightarrow x=y=4\)

28 tháng 2 2021

`1/x+1/y>=2/(\sqrt{xy})`

`<=>1/2>=2/(\sqrt{xy})`

`<=>\sqrt{xy}>=4`

`=>\sqrt{x}+\sqrt{y}>=2.2=4`

Dấu "=" xảy ra khi `x=y=4`