1/3x5+1/5x7+1/7x9+.........+1/2n-1x2n-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)
=(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9) chia 2
=(1-1/9)chia 2
=8/9 chia 2
=4/9
Đặt �=11�3+13�5+15�7+17�9A=1x31+3x51+5x71+7x91
2�=21�3+23�5+25�7+27�92A=1x32+3x52+5x72+7x92
2�=11−13+13−15+...+17−192A=11−31+31−51+...+71−91
2�=11−19=892A=11−91=98
�=89.12=49A=98.21=94
A = \(\dfrac{1}{3\times5}\) + \(\dfrac{1}{5\times7}\) + \(\dfrac{1}{7\times9}\)+...+ \(\dfrac{1}{2009\times2011}\)
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{2}{3\times5}\) + \(\dfrac{2}{5\times7}\)+ \(\dfrac{2}{7\times9}\)+...+ \(\dfrac{1}{2009\times2011}\))
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{9}\)+...+ \(\dfrac{1}{2009}\) - \(\dfrac{1}{2011}\))
A = \(\dfrac{1}{2}\) \(\times\) ( \(\dfrac{1}{3}\) - \(\dfrac{1}{2011}\))
A = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{2008}{6033}\)
A = \(\dfrac{1004}{6033}\)
\(\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{2}{7\times9}+..+\dfrac{1}{2009\times2011}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\\ =\dfrac{1}{3}-\dfrac{1}{2011}\)
Đến đây bn tự tính nhé.
=(2-1)*(2+1)+(4-1)*(4+1)+ ...+(2n-1)*(2n+1) =(2^2-1)+(4^2-1)+...+(4n^2-1) =(2^2+4^2+...+4n^2)-(1+1+...+1) =4(1^2+2^2+...n^2)-n n(n+1)(2n+1)/6: 1^2+2^2+3^2+…+n^2=n(n+1)(2n+1)/6n^2=n 1x3+3x5+5x7+7x9+...+17x19 =4(1^2+2^2+...n^2)-n =4*n(n+1)(2n+1)/6-n; n=10,1x3+3x5+5x7+7x9+...+17x19=1530
\(\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}+...+\dfrac{1}{997\cdot999}\)
= \(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{997}-\dfrac{1}{999}\right)\)
= \(\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{999}\right)\)
= \(\dfrac{1}{2}\cdot\dfrac{332}{999}=\dfrac{166}{999}\)
Đặt A = 1/3.5 + 1/5.7 + 1/7.9 + ..... + 1/99.101
=> 2A = 2/3.5 + 2/5.7 + 2/7.9 + ..... + 2/99.101
=> 2A = 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/99 - 1/101
=> 2A = 1/3 - 1/101
=> 2A = 88/303
=> A = 44/303
Đặt \(A=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}\)
\(2A=\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}\)
\(2A=\frac{1}{1}-\frac{1}{9}=\frac{8}{9}\)
\(A=\frac{8}{9}.\frac{1}{2}=\frac{4}{9}\)
A= 1/(1x3) + 1/(3x5)+ 1/(5x7) + 1/(7x9) + 1/(9x11)
A x 2 = 2/(1x3) + 2/(3x5)+ 2/(5x7) + 2/(7x9) + 2/(9x11)
Nhận xét :
2/(1x3) = 1 - 1/3
2/(3x5) = 1/3 - 1/5
2/(5x7) = 1/5 - 1/7
2/(7x9) = 1/7 - 1/9
2/(9x11) = 1/9 - 1/11
A x 2 = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11
A x 2 = 1 - 1/11
A x 2 = 10/11
A = 10/11 : 2 = 5/11
các bạn k mình nha!
giup mik voi mn nhanh len nhe
đề sai bạn ơi