Tìm x
\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+...+\left|x+\frac{1}{97.99}\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét :
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
Vì \(x\ge0\) nên pt a) tương đương với : \(100x+\frac{1+2+3+...+100}{101}=101x\)
\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)
b)
Tương tự câu a) , phương trình tương đương với :
\(49x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{...1}{97.99}=50x\)
\(\Rightarrow x=\frac{97}{195}\)
a: \(\Leftrightarrow\dfrac{x-214}{86}-1+\dfrac{x-132}{84}-2+\dfrac{x-54}{82}-3=0\)
=>x-300=0
hay x=300
ĐK : 51x \(\ge0\Rightarrow x\ge0\)
Với \(x\ge0\)thì \(x+\frac{1}{1.3}>0;x+\frac{1}{3.5}>0;...;x+\frac{1}{99.101}>0\)
Khi đó : \(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+\left|x+\frac{1}{5.7}\right|+...+\left|x+\frac{1}{99.101}\right|=51x\)
<=> \(x+\frac{1}{1.3}+x+\frac{1}{3.5}+x+\frac{1}{5.7}+....+x+\frac{1}{99.101}=51x\)(50 hạng tử x ở VT)
<=> \(50x+\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}=51x\)
<=> \(x=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{99.101}\right)\)
<=> \(x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
<=> \(x=\frac{1}{2}\left(1-\frac{1}{101}\right)=\frac{50}{101}\)
Vậy x = 50/101
Xinloi, t ghi thiếu đề
\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+...+\left|x+\frac{1}{97.99}\right|=50x\)
\(\left|x+\frac{1}{1.3}\right|+\left|x+\frac{1}{3.5}\right|+...+\left|x+\frac{1}{97.99}\right|=50x\)
Vì \(\left|x+\frac{1}{1.3}\right|\ge0\forall x\)
\(\left|x+\frac{1}{3.5}\right|\ge0\forall x\)
................
\(\left|x+\frac{1}{97.99}\right|\ge0\forall x\)
(VT: Vế trái; VP: Vế phải)
\(\Rightarrow VT\ge0\Rightarrow VP=50x\ge0\)mà \(50>0\)
\(\Rightarrow x>0\)
\(\Rightarrow x+\frac{1}{1.3}>0\forall x\)
..............
\(x+\frac{1}{97.99}>0\forall x\)(1)
(1) \(\Leftrightarrow x+\frac{1}{1.3}+x+\frac{1}{3.5}+...+x+\frac{1}{97.99}=50x\)
\(\Leftrightarrow49x+\left(\frac{1}{1.3}+...+\frac{1}{97.99}\right)=50x\)
\(\Leftrightarrow50x-49x=\frac{1}{2}\left(\frac{2}{1.3}+...+\frac{2}{97.99}\right)\)
\(\Leftrightarrow x=\frac{1}{2}\left(1-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Leftrightarrow x=\frac{1}{2}\left(1-\frac{1}{99}\right)\)
\(\Leftrightarrow x=\frac{1}{2}\cdot\frac{98}{99}=\frac{49}{99}\)
Vậy....
P/s: Làm bừa :) Ko chắc đúng nhé