CMR
\(\sqrt{2}+a\left(a\in Z^+\right)\)và số vô tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thiếu điều kiện n là số tự nhiên nhé
\(a)\)\(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-2\right)+...+3+2+1}\)
\(=\)\(\sqrt{\frac{n\left(n-1\right)}{2}+n+\frac{n\left(n-1\right)}{2}}\)
\(=\)\(\sqrt{\frac{2n\left(n-1\right)}{2}+n}\)
\(=\)\(\sqrt{n\left(n-1\right)+n}\)
\(=\)\(\sqrt{n\left(n-1+1\right)}\)
\(=\)\(\sqrt{n^2}\)
\(=\)\(\left|n\right|\)
Mà n là số tự nhiên nên \(n\ge0\)\(\Rightarrow\)\(\left|n\right|=n\)
Vậy \(\sqrt{1+2+3+4+...+\left(n-1\right)+n+\left(n-1\right)+...+3+2+1}=n\) ( đpcm )
Chúc bạn học tốt ~
a, \(\left(\sqrt{x}-1\right)^2=0,5625\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}-1=0,75\\\sqrt{x}-1=-0,75\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=1,75\\\sqrt{x}=0,25\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3,0625\\x=0,0625\end{cases}}\)
b, giả sử \(\sqrt{7}\) là số hữu tỉ
\(\Rightarrow\) \(\sqrt{7}=\frac{m}{n}\)
\(\Rightarrow7=\frac{m^2}{n^2}\)
\(\Rightarrow m^2=7n^2\)
\(\Rightarrow m^2⋮n^2\)
\(\Rightarrow m⋮n\) (vô lí)
vậy giả sử trên sai => \(\sqrt{7}\) là số vô tỉ
a) TA CÓ : (\(\sqrt{x}\)- 1 )2 = 0,5625 = ( 0,75 )2
=> \(\sqrt{x}\)- 1 = 0,75
=> \(\sqrt{x}\) = 1,75
=> x = 3,0625
Vậy x = 3,0625
b) TA DÙNG PHƯƠNG PHÁP PHẢN CHỨNG
Giả sử\(\sqrt{7}\)là số hữu tỉ => \(\sqrt{7}\)sẽ có thể viết dưới dạng một phân số tối giản có dạng \(\frac{a}{b}\)
Ta có : \(\sqrt{7}\)= \(\frac{a}{b}\)=> 7 = \(\frac{a^2}{b^2}\)
=> a2 = 7b2 => a2 chia hết cho b2
=> a chia hết cho b ( vô lý vì \(\frac{a}{b}\)đã là phân số tối giản )
VẬY GIẢ SỬ PHẢN CHỨNG LÀ SAI => \(\sqrt{7}\)LÀ SỐ VÔ TỈ ( ĐPCM )
NẾU THẤY ĐÚNG THÌ NHỚ CHO MÌNH NHA!!!><
Ta có : \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)
\(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)
nhân theo vế của ( 1 ) ; ( 2 ) , ta có :
\(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)
\(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)
rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :
\(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)
\(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)
\(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\)
\(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)
A = 2017
( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :) )
2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)
\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)
\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)
\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)
Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)
\(\Leftrightarrow x=2015;y=2016;z=2017\)
\(A=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{5}}.\)\(\sqrt{4+\sqrt{5}}.\sqrt{4-\sqrt{5}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right).\sqrt{4+\sqrt{5}}.\)\(\sqrt{\left(4-\sqrt{5}\right)\left(4+\sqrt{5}\right)}\)
\(=\left(\sqrt{10}-\sqrt{6}\right)\)\(\sqrt{4+\sqrt{5}}.\sqrt{16-15}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}.\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=5-3=2\)
\(\Rightarrow A\)là số hữu tỉ
Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\\z-x=c\end{cases}}\)
Vì \(\left(x-y\right)+\left(y-z\right)+\left(z-x\right)=0\) nên \(a+b+c=0\Rightarrow a+b=-c\)
Ta có : \(P=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}\)
\(=\sqrt{\frac{\left(a+b\right)^2b^2+a^2\left(a+b\right)^2+a^2b^2}{a^2b^2\left(a+b\right)^2}}=\sqrt{\frac{a^4+b^4+a^2b^2+2ab^3+2ab^3+2a^2b^2}{a^2b^2\left(a+b\right)^2}}\)
\(=\sqrt{\frac{\left(a^2+b^2+ab\right)^2}{a^2b^2\left(a+b\right)^2}}=\frac{a^2+b^2+ab}{ab\left(a+b\right)}\) là một số hữu tỉ (đpcm)
tth thiếu cái chứng minh \(\sqrt{2}\) là số vô tỉ nên tôi chứng minh nốt.
Giả sử \(\sqrt{2}\) là số hữu tỉ.Khi đó \(\sqrt{2}=\frac{p}{q}\) với \(p,q\in Z^+,\left(p,q\right)=1\).
\(\Rightarrow2=\frac{p^2}{q^2}\Rightarrow p^2=2q^2\)
Do \(p⋮2\Rightarrow p^2⋮2\Rightarrow p^2⋮4\Rightarrow2q^2⋮4\Rightarrow q^2⋮2\Rightarrow q⋮2\)
Nên \(\left(p,q\right)\ne1\)(KTMĐK)
Vậy......
Giả sử \(\sqrt{2}+a\left(a\in Z^+\right)=m\) là số hữu tỉ.
Suy ra \(\sqrt{2}=m-a\) là số hữu tỉ.
Tức là \(\sqrt{2}\)là số hữu tỉ (vô lí)
Vậy \(\sqrt{2}+a\left(a\in Z^+\right)\)là số vô tỉ.