tìm nghiệm nguyên của pt
\(x^2y^2(x+y)+x=2+y(x-1)\)
đề thi hsg toán 9 tỉnh thanh hóa năm nay đó
giúp mk nha mn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh ơi em nghĩ phải lả \(+\frac{1}{x+y+z}\)thì mới đúng ạ
sửa đề \(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}+\frac{1}{x+y+z}\)
giải
Áp dụng bđt cô si cho 3 số dương \(x,y,z\)ta có:
\(\hept{\begin{cases}x^2+1\ge2\sqrt{x^2}=2x\\y^2+1\ge2\sqrt{y^2}=2y\\z^2+1\ge2\sqrt{z^2}=2z\end{cases}}\)
\(\Rightarrow\frac{x^2+1}{x}\ge2;\frac{y^2+1}{y}\ge2;\frac{z^2+1}{z}\ge2\)(1)
Áp dụng bđt bunhiacopxki ta có:
\(\left(x+y+z\right)^2\le\left(1^2+1^2+1^2\right)\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2\le3^2\)
Mà \(x,y,z\)nguyên dương
\(\Rightarrow x+y+z\le3\)
\(\Rightarrow\frac{1}{x+y+z}\ge\frac{1}{3}\left(2\right)\)
Lấy (1) + (2) ta được:
\(M\ge2+2+2+\frac{1}{3}\)
\(\Rightarrow M\ge\frac{19}{3}\)
Dấu"="xảy ra \(\Leftrightarrow x=y=z\)
Trẻ con giờ ghê thật chưa gì đã dồn biến, khử lũy thừa rồi, có khi mình tiến hóa ko kịp mất xd
\(S=ab^2+bc^2+ca^2-abc\)
WLOG \(b=mid\left\{a,b,c\right\}\) khi đó \(S\le a^2b+bc^2+abc-abc=b\left(1-b^2\right)\)
\(=\sqrt{\frac{1}{2}\cdot\left(\frac{2b^2+1-b^2+1-b^2}{3}\right)^3}=\frac{2\sqrt{3}}{9}\)
Sau khi đã có kq \(\frac{2\sqrt{3}}{9}\)rồi ai có đam mê biến đổi có thể cm bdt sau, làm thành bổ đề về sau dùng \(\left(ab^2+bc^2+ca^2-abc\right)^2\le\frac{4}{27}\left(a^2+b^2+c^2\right)^3\)
WLOG \(a=min\left\{a,b,c\right\},b=a+u,c=a+v\) khi đó bdt cần cm tương đương
\(-\left(v^2-2u^2\right)^2\left(u^2+4v^2\right)-.....\le0\)
ngại viết quá nhưng đại ý là nó sẽ bé hơn hoặc bằng 0 sau đó lấy căn 2 vế ta cũng dc GTLN tương ứng
đặt \(\left(a;b;c\right)=\left(2^x;2^y;2^z\right)\) (a,b,c>0)
bài toán trở thành: cho a,b,c là các số thực dương thoả mãn \(a^2+b^2+c^2=1\)
Tìm max \(S=ab^2+bc^2+ca^2-abc\) ez :DDDD
Ta có: \(\frac{1}{x+1}=1-\frac{1}{y+1}+1-\frac{1}{z+1}\)
\(=\frac{y}{y+1}+\frac{z}{z+1}\ge2\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}}\)
Tương tự các BĐT còn lại rồi nhân theo vế thu được:
\(\frac{1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\ge8\sqrt{\frac{yz}{\left(y+1\right)\left(z+1\right)}.\frac{zx}{\left(z+1\right)\left(x+1\right)}.\frac{xy}{\left(x+1\right)\left(z+1\right)}}\)
\(\Rightarrow P=xyz\le\frac{1}{8}\)
Đẳng thức xảy ra khi x = y = z = 1/2
Vậy...
\(\Leftrightarrow x^2y^2\left(x+y\right)+x+y=xy+2\)
\(\Leftrightarrow\left(x+y\right)\left(x^2y^2+1\right)=xy+2\)
\(\Rightarrow xy+2⋮x^2y^2+1\)
\(\Rightarrow\left(xy-2\right)\left(xy+2\right)⋮x^2y^2+1\)
\(\Rightarrow x^2y^2-4⋮x^2y^2+1\)
\(\Rightarrow5⋮x^2y^2+1\)
\(\Rightarrow\left[{}\begin{matrix}x^2y^2=4\\x^2y^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}xy=2\\xy=-2\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\end{matrix}\right.\)
Xét \(xy=2\)\(\Rightarrow\)\(5\left(x+y\right)=6\)(pt vô nghiệm nguyên)
Xét xy=-2\(\Rightarrow5\left(x+y\right)=0\)
\(\Rightarrow x=-y\)
\(\Rightarrow y^2=2\)(pt vô nghiệm nguyên)
Xét x=0\(\Rightarrow y=2\)
Xét y=0\(\Rightarrow x=2\)
Thử lại ta thấy cặp số (x;y)=(0;2);(2;0) thỏa mãn
Vậy ...