Chứng tỏ S=\(16^{20}-2^{74}⋮63\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tk
S=1620-274
=(24)20-274
=280-274=274.26-274=274.(26-1)=274.63 chia hết cho 63
=>S chia hết cho 63(đpcm)
CM S=1620-274 chia hết cho 63 - Hoc24
S=1620-274
=(24)20-274
=280-274=274.26-274=274.(26-1)=274.63 chia hết cho 63
=>S chia hết cho 63(đpcm)
Ta có: 1/20<1/11
1/20<1/12
...
=> 1/20+1/20+..+1/20 < 1/11+1/12+...+1/20
=> 1/20.10<1/11.1/12+1/13+...+1/20
=> 1/2< 1/11+1/12+1/12+1/13+...+1/20
=> 1/2<S (đpcm)
k mik nhé các bạn. Thanks you nhé ^_<
\(S< \dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
bạn hãy áp dụng và like nha
Chứng minh rằng: 1 + 1/2 + 1/3 + 1/4 +...+ 1/63 < 6?
trước hết ta cần chứng minh bài toán 1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)<n/(k+1... với n>2,k thuộc N*
Thật vậy vì k thuộc N*nên ta có
k+1=k+1=>1/(k+1)= 1/(k+1)
k+2>k+1=>1/(k+2)<1/(k+1)
k+3>k+1=>1/(k+3)< 1/(k+1)
…
k+n>k+1=>1/(k+n)< 1/(k+1)
=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)<
1/(k+1)+ 1/(k+1)+…+ 1/(k+1) (có n số 1/(k+1) )
=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)
<n/(k+1)
…………………………
Áp dụng bài toán trên ta có
1=1
1/2+1/3
=1/(1+1)+1/(1+2)
<2/(1+1)=2/2=1
1/4+1/5+1/6+1/7
=1/(3+1)+1/(3+2)+1/(3+3)+1/(3+4)
<4/(3+1)=4/4=1
1 / 8 +1/9 ... +1/15
=1/(7+1)+1/(7+2)+…+1/(7+8)
<8/(7+1)=8/8=1
1/16+1/17+..+1/31
=1/(15+1)+1/(15+2)+….+1/(15+16)
<16/(15+1)=16/16=1
1/32+1/33+…+1/63
=1/(31=1)+1/(32+1)+…+1/(31+32)
<32/(31+1)=32/32=1
=>1 / 2 + 1 / 3+…+1/63<1+1+1+1+1+1
=>1 / 2 + 1 / 3+…+1/63<6 (đpcm)
Lời giải:
$S=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}$
$5S=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+....+\frac{99}{5^{99}}$
$5S-S=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}-\frac{99}{5^{100}}$
$4S+\frac{99}{5^{100}}=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{99}}$
$5(4S+\frac{99}{5^{100}})=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}$
$5(4S+\frac{99}{5^{100}})-(4S+\frac{99}{5^{100}})=1-\frac{1}{5^{99}}$
$4(4S+\frac{99}{5^{100}})=1-\frac{1}{5^{99}}$
$16S=1-\frac{1}{5^{99}}-\frac{99.4}{5^{100}}<1$
$\Rightarrow S< \frac{1}{16}$
ta thấy: 16^5=2^20
=> A=16^5 + 2^15 = 2^20 + 2^15
= 2^15.2^5 + 2^15
= 2^15(2^5+1)
=2^15.33
số này luôn chia hết cho 33
S = 1620- 274
= (24)20-274
= 280 - 274 = 274 . 26 - 274= 274.(26-1)= 274.63 chia hết cho 63
=> S = 1620-274 chia hết cho 63 (đpcm)
Ta có
\(S=16^{20}-2^{74}⋮63\)
\(S=\left(2^4\right)^{20}-2^{74}\)
\(S=2^{80}-2^{74}\)
\(S=2^{74}\left(2^6-1\right)\)
\(S=2^{74}.63⋮63\)
Vậy \(S⋮63\)