K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2021

Gọi đường thẳng (d) có hàm số y=kx+b (k khác 0) (do hàm số có hệ số góc là k )

Vì (d) đi qua I(0;-1) => -1=0k+b => b=-1

=> y=kx-1(d)

Xét phương trình hoành độ giao điểm chung của (P) và (d) ta có:

-x^2=kx-1

<=> x^2-kx-1=0 (1)

Xét phương trình có a=1;c=-1 => ac=-1 <0 

=> (1) luôn có 2 nghiệm phân biệt

=> (P) và (d) luôn cắt nhau tại 2 điểm phân biệt

5 tháng 11 2018

Đáp án D.

11 tháng 12 2018

Suy ra số điểm cực tiểu của hàm số lZdA4RhLyPTy.png là 4

22 tháng 11 2018

Đáp án A

Hoành độ giao điểm của hai đồ thị hàm số đã cho là nghiệm phương trình:

x2 = 3x2 ⇔ -2x2 = 0 ⇔ x = 0

Với x = 0 thì y= 02 = 0

Do đó,đồ thị hai hàm số đã cho cắt nhau tại điểm duy nhất là gốc tọa độ O(0; 0).

Bài 1 Giải các phương trình sau:          a)  x2 + 6x + 8 = 0                   b) 9x2 – 6x + 1 = 0Bài 2. Cho hai hàm số y = 2x2 và y = x + 1a)     Vẽ đồ thì hai hàm số này trên cùng một mặt phẳng tọa độ.b)    Tìm tọa độ giao điểm của hai đồ thị đó.Bài 3 : Cho phương trình x2 + 2x + 2m  = 0 a)     Tìm m để phương trình có hai nghiệm trái dấu.b)    Tìm m để phương trình có...
Đọc tiếp

Bài 1 Giải các phương trình sau:

          a)  x2 + 6x + 8 = 0                   b) 9x2 – 6x + 1 = 0

Bài 2. Cho hai hàm số y = 2x2 và y = x + 1

a)     Vẽ đồ thì hai hàm số này trên cùng một mặt phẳng tọa độ.

b)    Tìm tọa độ giao điểm của hai đồ thị đó.

Bài 3 : Cho phương trình x2 + 2x + 2m  = 0 

a)     Tìm m để phương trình có hai nghiệm trái dấu.

b)    Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn điều kiện 2x1 + x2 = -4.

Bài 4  1. Cho đường tròn tâm O đường kính AB, đường thẳng vuông góc với AB tại O cắt đường tròn tại M , K là một điểm bất kỳ trên cung nhỏ BM. Gọi H là chân đường vuông góc của M xuống AK

a) Chứng minh rằng AOHM là tứ giác nội tiếp

b) Tam giác MHK là tam giác gì? Vì sao?

c) Chứng minh OH là tia phân giác của góc MOK

Bài 5: Tính thể 6 tích của một hình nón có đường cao bằng 8cm và babs kính đường tròn đáy bằng 6cm

2

Bài 1: 

a: \(x^2+6x+8=0\)

=>(x+2)(x+4)=0

=>x=-2 hoặc x=-4

b: \(9x^2-6x+1=0\)

=>(3x-1)2=0

=>3x-1=0

hay x=1/3

9 tháng 5 2022

Câu 1:

a. x+ 6x + 8 = 0

\(\Delta'=3^2-8=1>0\)

Do \(\Delta'>0\) nên phương trình có 2 nghiệm phân biệt:

\(x_1=\dfrac{-3+\sqrt{1}}{1}=-2\)

\(x_2=\dfrac{-3-\sqrt{1}}{1}=-4\)

b. 9x2 - 6x + 1 = 0

\(\Delta'=\left(-3\right)^2-9.1=0=0\)

Do \(\Delta'=0\) nên phương trình có nghiệm kép:

\(x_1=x_2=\dfrac{3}{9}=\dfrac{1}{3}\)

a) Phương trình hoành độ giao điểm là:

\(x^2=2x-m+2\)

\(\Leftrightarrow x^2-2x+m-2=0\)

Để hai đồ thị hàm số chỉ có một điểm chung thì Δ=0

\(\Leftrightarrow4-1\cdot\left(m-2\right)=0\)

\(\Leftrightarrow m-2=4\)

hay m=6

NV
14 tháng 12 2020

Do \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e\) có 4 nghiệm pb \(x_1;x_2;x_3;x_4\)

\(\Rightarrow f\left(x\right)=a\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\)

Ta có:

\(f'\left(x\right)=a\left[\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)+\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)+\left(x-x_1\right)\left(x-x_3\right)\left(x-x_4\right)+\left(x-x_1\right)\left(x-x_2\right)\left(x-x_4\right)\right]\)

\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_1\right)=a\left(x_1-x_2\right)\left(x_1-x_3\right)\left(x_1-x_4\right)\\f'\left(x_2\right)=a\left(x_2-x_1\right)\left(x_2-x_3\right)\left(x_2-x_4\right)\\f'\left(x_3\right)=a\left(x_3-x_1\right)\left(x_3-x_2\right)\left(x_3-x_4\right)\\f'\left(x_4\right)=a\left(x_4-x_1\right)\left(x_4-x_2\right)\left(x_4-x_3\right)\end{matrix}\right.\)

Mà tiếp tuyến tại A và B vuông góc \(\Leftrightarrow f'\left(x_1\right).f'\left(x_2\right)=-1\) (1)

Do \(x_1;x_2;x_3;x_4\) lập thành 1 CSC, giả sử công sai của CSC là \(d\)

\(\Rightarrow\left\{{}\begin{matrix}x_2=x_1+d\\x_3=x_1+2d\\x_4=x_1+3d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_1\right)=a.\left(-d\right).\left(-2d\right).\left(-3d\right)=-6ad^3\\f'\left(x_2\right)=a.d.\left(-d\right).\left(-2d\right)=2ad^3\\f'\left(x_3\right)=a.2d.d.\left(-d\right)=-2ad^3\\f'\left(x_4\right)=a.3d.2d.d=6ad^3\end{matrix}\right.\)

Thế vào (1): \(-12a^2d^6=-1\Leftrightarrow12a^2d^6=1\)

\(\Rightarrow f'\left(x_3\right)+f'\left(x_4\right)=4ad^3\)

\(\Rightarrow S=\left(4ad^3\right)^{2020}=\left(16a^2d^6\right)^{1010}=\left(\dfrac{4}{3}.12a^2d^6\right)^{1010}=\left(\dfrac{4}{3}\right)^{1010}\)

Bài gì mà dễ sợ :(

14 tháng 12 2020

undefined

26 tháng 8 2017

Đáp án D